
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2006

Mathematical model of arsenic adsorption in a
modified zeolite / Microfiltration System
Miles B. Beamguard
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Beamguard, Miles B., "Mathematical model of arsenic adsorption in a modified zeolite / Microfiltration System" (2006). Graduate
Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2454

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

 

 
 
 

Mathematical Model of Arsenic Adsorption 
 in a Modified Zeolite / Microfiltration System 

 
 
 

by 
 
 
 

Miles B. Beamguard 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
Department of Civil and Environmental Engineering 

College of Engineering 
University of South Florida 

 
 
 

Major Professor: Robert P. Carnahan, Ph.D. 
Marilyn Barger, Ph.D. 
Richard Gilbert, Ph.D. 
Julie Harmon, Ph.D. 

Audrey Levine, Ph.D. 
Mahmood Nachabe, Ph.D. 

 
 

Date of Approval: 
October 5, 2006 

 
 
 
 

Keywords: Arsenite, Cake Layer, Chabazite, Copper, Iron 
 

© Copyright 2006, Miles B. Beamguard 



www.manaraa.com

  

 

 

 

 

 

 

 

DEDICATION 

This dissertation is dedicated to my friends and family but most importantly to the 

memory of my good friend Doug Ketchum.  I first met Doug in 2nd Grade, where we 

competed religiously for better math grades.  Throughout life we battled to better the 

other in whatever we did.  While I had just started my first semester of graduate school at 

USF, Doug was moving up the corporate ladder as a trader for Cantor Fitzgerald at the 

World Trade Center.  Although he died on September 11, 2001, our competition lives on 

and I will always try to accomplish the lofty goals we once set. 

 



www.manaraa.com

  

 

 

ACKNOWLEDGEMENTS 

I would like to begin by thanking my major professor, Dr. Robert P. Carnahan, for the 

wealth of knowledge and guidance he has afforded me over the last five years.  The 

support he has provided me over this time has enabled me to leave my full time position 

and return to school.  While his counseling on the direction of my dissertation was 

extremely welcomed, his ability to allow me to learn by trial and error made me a more 

efficient researcher.  I truly appreciate his faith in me and his advice when I seem to lose 

my way.  In my work outside of school and from within I have never met a person who 

has such a busy schedule, but who can still afford the time and energy to provide 

scholastic guidance and direction in life. 

I would also like to thank my committee of Dr. Marilyn Barger, Dr. Audrey Levine, Dr. 

Mahmood Nachabe, Dr. Richard Gilbert, and Dr. Julie Harmon.  Each of you played a 

fundamental role in my education and direction of my research.  Having classes with 

each of these professors helped to shape my research proposal and provided me an 

opportunity to get to know their strengths.  It is these strengths that I know led to their 

suggestions to enhance my dissertation and their critical review of my research.  

Much appreciation is due to my lab partner Ashutosh Vakharkar, without whom I am 

sure I would still be in the lab.  His patience for my sometimes over-enthusiasm was well 

beyond that of his age.  Many times my haste would have prolonged our work, but his 

engineering background allowed me to think outside the box while he held true to the job 

at hand. 

Others who deserve appreciation include: Catherine High, for her help in procurement of 

my materials; Dr. Maya Trotz for the use of her Graphite Furnace AA; the Geology 

Department for the initial arsenic analysis; Tampa Bay Water for metals analysis and for 

verification of my methods; and Office of Naval Research (ONR), for funding the main 



www.manaraa.com

  

project, Zeolite Pretreatment for Microfiltration and Ultrafiltration Systems used in 

Desalination Treatment of Contaminated Water. 

Lastly, I would like to thank Jennifer Franklin, my fiancée.  By the time this dissertation 

is published we will have been married and she will truly understand how much of a pain 

I can be.  Her patience with me and her push to have me finish has been unbelievable 

over the last few months and I truly appreciate her dedication when mine can be lacking.  

Dr. Carnahan once said to write the dissertation so that even someone who does not 

understand the engineering behind the project can follow your process and reasoning and 

feel like they understand the general concept.  Through her reading, recommendations, 

and re-reading of this document, I hope that this goal is accomplished.



www.manaraa.com

 - i - 

 
 

 
TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................ iii 
LIST OF FIGURES.........................................................................................................v 

LIST OF NOMENCLATURE ........................................................................................xi 
ABSTRACT.................................................................................................................xiv 

INTRODUCTION...........................................................................................................1 
RESEARCH AND OBJECTIVES...................................................................................4 

LITERATURE REVIEW ................................................................................................6 
Arsenic Occurrence..............................................................................................6 
Arsenic Chemistry ...............................................................................................8 
Methods and Costs Associated with Arsenic Treatment......................................13 

Coagulation and Precipitation.................................................................15 
Adsorption Processes and Materials........................................................16 
Ion Exchange..........................................................................................17 
Activated Alumina .................................................................................18 
Granular Ferric Hydroxide......................................................................19 
Iron Oxide Coated Sand and Iron Oxide Coated Fiberglass.....................21 
Pyrite Fines ............................................................................................21 
Zeolites ..................................................................................................21 
Membrane Separation.............................................................................30 

Background on Adsorption Isotherms ................................................................35 
Freundlich Isotherms ..............................................................................35 
Langmuir Isotherms................................................................................36 

Cake Layer.........................................................................................................37 
Membrane with Adsorbent Models ....................................................................39 

METHODS AND MATERIALS ...................................................................................44 
Materials ............................................................................................................44 
Methods.............................................................................................................45 

Modification of the Zeolite .....................................................................46 
Kinetic and Equilibrium Studies .............................................................49 

Kinetic Studies............................................................................49 
Equilibrium Studies ....................................................................50 
Long Term Equilibrium Studies ..................................................51 

Sampling Procedure and Analytical Methods..........................................51 
Microfiltration Baseline Qualification.....................................................53 
Microfiltration with Zeolite Studies ........................................................59 

 



www.manaraa.com

 - ii - 

RESULTS AND DISCUSSION ....................................................................................62 
Modification of Zeolite ......................................................................................62 
Freundlich and Langmuir Isotherm Equilibrium Studies.....................................64 

Kinetic and Equilibrium Studies in De-ionized Water.............................65 
Kinetic Studies............................................................................65 
Equilibrium Studies ....................................................................67 

Kinetic Studies for Determination of Effect of Stoichiometric Ratio .......70 
Relationship Between Mass of Zeolite and Arsenic Removal..................74 
Uptake and Leaching Studies..................................................................75 
Results from Long Term Equilibrium Studies Using Different 
Modified Chabazite in Dechlorinated Tap Water ....................................77 
Results from Kinetic Studies for Arsenic Adsorption in Various 
Source Waters ........................................................................................79 
Effects of Competing Ions on Adsorption ...............................................82 

Chloride Competition..................................................................82 
Sulfate Competition ....................................................................85 

Arsenic Removal Results from Zeolite/Membrane Reactor ................................88 
Development of Mathematical Model Describing this System............................92 

Langmuir Model of Zeolite/Membrane System.......................................92 
Freundlich Model of Zeolite/Membrane System .....................................94 
Non-Linear Curve Fit Model of Zeolite/Membrane System ....................97 
Irreversible Adsorption Model of Zeolite/Membrane System................104 
Limitations of Irreversible Adsorption Model .......................................122 
Practical Application of Irreversible Adsorption Model ........................123 

CONCLUSIONS AND FUTURE WORK ...................................................................126 
REFERENCES............................................................................................................129 

APPENDICIES ...........................................................................................................134 
Appendix A – Arsenic Standards and Analysis.................................................135 

Preparation of Arsenic Trioxide Standard Solution ...............................135 
Arsenic Analysis ..................................................................................135 

Appendix B – Determination of Order of Reaction...........................................137 
Rate Determination for Modified Chabazite with Different Salts In 
De-ionized Water .................................................................................138 
Rate Determination with Chloride Salts of Different Metals In Tap 
Water ...................................................................................................143 
Rate Determination with Different Salts of Same Metal in Tap 
Water ...................................................................................................146 
Rate Determination for Ferrous Modified Chabazite in Different 
Source Waters ......................................................................................147 

Appendix C – Operational Conditions Versus Arsenic Breakthrough ...............148 
Appendix D – Analysis of Variance of Irreversible Adsorption Model .............158 
Appendix E – Glossary ....................................................................................177 

ABOUT THE AUTHOR……………….……………...………………………....End Page 



www.manaraa.com

 - iii - 

 

 

LIST OF TABLES 
Table 1 - Utilities over the 10 µg/L arsenic MCL...........................................................13 
Table 2 - Annual mean household cost for meeting 10 µg/L arsenic MCL .....................14 

Table 3 - Summary of arsenic removal by coagulation studies (Forlini, 1998)................16 
Table 4 - Materials list ...................................................................................................44 

Table 5 - Operational matrix for modified zeolite/membrane substrate studies...............60 
Table 6 - Zeolite mass per volume of filtered water in reactor........................................60 

Table 7 - Modification of zeolite ionic results ................................................................63 
Table 8 - Kinetic studies on DI water with concentrations of As(III) at 100 ppb 

and zeolite at 0.5 g/L......................................................................................66 
Table 9 - Order of reaction and rate constants for modified chabazite in DI water..........67 

Table 10 - Langmuir and Freundlich isotherm constants in DI water..............................69 
Table 11 - Kinetic results using chabazite modified with same salt of different 

metals with 0.5 g/L of modified chabazite ....................................................71 
Table 12 - Reaction order and rate constants for chabazite modified with same 

salts of different metals ................................................................................72 
Table 13 - Results from kinetic studies using chabazite modified with different 

salts of same metal at 0.5 g/L of modified chabazite .....................................73 
Table 14 - Uptake data for metals used in modification of chabazite ..............................76 

Table 15 - Langmuir and Freundlich correlation coefficients obtained for long 
term equilibrium studies ...............................................................................77 

Table 16 - Langmuir and Freundlich isotherm constants for ferrous sulfate 
modified chabazite in dechlorinated tap water ..............................................79 

Table 17 - Results from kinetic studies using different source waters with 0.5 g/L 
of zeolite ......................................................................................................81 

Table 18 - Order of reaction and reaction rate constants for kinetic studies with 
ferrous sulfate modified chabazite in various source waters..........................81 

Table 19 - Curve fitting parameters for Langmuir adsorption model ..............................94 
Table 20 - Saturation times for each zeolite/membrane case.........................................108 

Table 21 - Saturation concentrations inside the zeolite for each zeolite/membrane 
case ............................................................................................................108 

Table 22 - ka values for each zeolite/membrane case ...................................................109 



www.manaraa.com

 - iv - 

Table 23 - Operational conditions and correlation coefficients for all cases..................117 
Table 24 - Saturation times and beta values for all cases ..............................................119 

 
 



www.manaraa.com

 - v - 

 

 

LIST OF FIGURES 
Figure 1 - Occurence of arsenic in groundwater in the United States................................7 

Figure 2 - Log concentration vs. pH for As(V).................................................................9 
Figure 3 - Speciation percentage vs. pH for As(V) .........................................................10 

Figure 4 - Log concentration vs. pH for As(III)..............................................................11 
Figure 5 - Speciation percentage vs. pH for As(III)........................................................12 

Figure 6 - Effect of pH on activated alumina performance (USEPA, 2000)....................19 
Figure 7 - Effect of pH on arsenic removal by GFH (Banerjee et al. 2002).....................20 

Figure 8 - Basic framework of heulandite (Armbruster, 2001) .......................................25 
Figure 9 - Clinoptilolite crystal from http://mineral.galleris.com....................................26 

Figure 10 - Clinoptilolite structure and AFM (Occelli, 1994) .........................................26 
Figure 11 - Structural framework of chabazite (Guisnet, 2002) ......................................27 

Figure 12 - Chabazite crystal from http://mineral.galleris.com.......................................27 
Figure 13 - SEM of chabazite (Kirkov, 1994). ...............................................................28 

Figure 14 - Metals removal from water using chabazite (Ouki, 1999) ............................29 
Figure 15 - Metals removal from water using clinoptilolite (Ouki, 1999) .......................29 

Figure 16 - Membrane separation compared to size of common materials 
(Osmonics, 2004) .........................................................................................31 

Figure 17 - MF and UF installed capacity in USA (Lozier, J., CH2M-Hill, 2001) ..........33 
Figure 18 - Cross section of UF membrane under SEM (Mallevialle, 1996)...................34 

Figure 19 - Mettler AE 260 Delta Range Analytical Balance .........................................46 
Figure 20 - Batch reactors for pretreatment of chabazite using various reagents.............47 

Figure 21 -  400 mesh sieve ...........................................................................................47 
Figure 22 - Modified chabazite in Pyrex drying tray ......................................................48 

Figure 23 - Blue M Stabil Therm Gravity Oven used for drying of treated 
chabazite ......................................................................................................48 

Figure 24 - Chabazite before and after copper (I) chloride modification.........................48 
Figure 25 - Chabazite before and after iron (II) chloride modification............................49 

Figure 26 - Chabazite before and after iron (II) sulfate modification ..............................49 
Figure 27 - Kinetic studies jar tester configuration.........................................................50 



www.manaraa.com

 - vi - 

Figure 28 - Geology Lab AA .........................................................................................52 
Figure 29 - Calibration curve for Geology Lab AA........................................................52 

Figure 30 - Varian SpectrAA Zeeman Graphite Furnace ................................................53 
Figure 31 - Membrane system........................................................................................54 

Figure 32 - Single cycle flux decline test .......................................................................55 
Figure 33 - Multiple cycle declining flux test.................................................................56 

Figure 34 - Inherent membrane rejection of arsenic .......................................................57 
Figure 35 - Initial cake deposition..................................................................................58 

Figure 36 - Final cake deposition ...................................................................................58 
Figure 37 - Permeability changes due to cake layer formation........................................59 

Figure 38 - Kinetic runs for As(III) removal using a modified chabazite in DI 
water ............................................................................................................65 

Figure 39 - Langmuir adsorption isotherm for modified chabazite in DI water...............68 
Figure 40 - Freundlich adsorption isotherm for modified chabazite in DI water .............69 

Figure 41 - Kinetic runs for As(III) adsorption using chloride salts of two metal 
ions in dechlorinated tap water .....................................................................71 

Figure 42 - Kinetic studies for As(III) using different salts of same metal in 
dechlorinated tap water.................................................................................73 

Figure 43 - Relationship between As(III) removal and mass of zeolite ...........................75 
Figure 44 - Langmuir isotherm for long term equilibrium studies using ferrous 

sulfate modified chabazite in dechlorinated tap water ...................................78 
Figure 45 - Freundlich isotherm for long term equilibrium studies using ferrous 

sulfate modified chabazite in dechlorinated tap water ...................................79 
Figure 46 - As(III) adsorption kinetics for different source waters .................................80 

Figure 47 - Chloride concentration used in As(III) competitive kinetic studies...............83 
Figure 48 - As(III) adsorption kinetics with chloride competition ..................................84 

Figure 49 - As(III) adsorption kinetics with increase ionic strength................................85 
Figure 50 - As(III) adsorption kinetics with increased sulfates .......................................86 

Figure 51 - Sulfate interference with arsenic analysis.....................................................87 
Figure 52 - Sulfate interference on arsenic analysis - method comparison ......................88 

Figure 53 - Arsenic breakthrough curves for zeolite/membrane reactor, where Cf = 
As(III) feed concentration, Mz = mass of zeolite in reactor, J = water 
flux through membrane in L/(m2.h) or lmh ...................................................89 

Figure 54 - Arsenic uptake per gram of zeolite versus total arsenic into the system........90 



www.manaraa.com

 - vii - 

Figure 55 - Arsenic uptake in 5 minutes versus the arsenic dosed into the system ..........91 
Figure 56 - Langmuir model of arsenic adsorption in zeolite/membrane reactor.............93 

Figure 57 - Freundlich model of case I (140.6 ug/L of arsenic, 11.78 g of zeolite, 
and a water flux rate of 34 L/(m2.h)).............................................................95 

Figure 58 - Freundlich model of case II (147.6 ug/L of arsenic, 11.78 g of zeolite, 
and a water flux rate of 51 L/(m2.h)).............................................................95 

Figure 59 - Freundlich model of case III (81.1 ug/L of arsenic, 11.78 g of zeolite, 
and a water flux rate of 34 L/(m2.h)).............................................................96 

Figure 60 - Freundlich model of case IV (81.5 ug/L of arsenic, 11.78 g of zeolite, 
and a water flux rate of 51 L/(m2.h)).............................................................96 

Figure 61 - Freundlich model of case V (34.7 ug/L of arsenic, 11.78 g of zeolite, 
and a water flux rate of 34 L/(m2.h)).............................................................97 

Figure 62 - Freundlich model of case VI (30.2 ug/L of arsenic, 11.78 g of zeolite, 
and a water flux rate of 51 L/(m2.h)).............................................................97 

Figure 63 – Non-linear curve fit model of case I (140.6 ug/L of arsenic, 11.78 g of 
zeolite, and a water flux rate of 34 L/(m2.h)) ................................................98 

Figure 64 - Non-linear curve fit model of case II (147.6 ug/L of arsenic, 11.78 g 
of zeolite, and a water flux rate of 51 L/(m2.h)) ............................................99 

Figure 65 - Non-linear curve fit model of case III (81.1 ug/L of arsenic, 11.78 g of 
zeolite, and a water flux rate of 34 L/(m2.h)) ................................................99 

Figure 66 - Non-linear curve fit model of case IV (81.5 ug/L of arsenic, 11.78 g of 
zeolite, and a water flux rate of 51 L/(m2.h)) ..............................................100 

Figure 67 - Non-linear curve fit model of case V (34.7 ug/L of arsenic, 11.78 g of 
zeolite, and a water flux rate of 34 L/(m2.h)) ..............................................100 

Figure 68 - Non-linear curve fit model of case VI (30.2 ug/L of arsenic, 11.78 g of 
zeolite, and a water flux rate of 51 L/(m2.h)) ..............................................101 

Figure 69 - Non-linear curve fit model of case VII (141.7 ug/L of arsenic, 23.56 g 
of zeolite, and a water flux rate of 34 L/(m2.h)) ..........................................101 

Figure 70 - Non-linear curve fit model of case VIII (138.9 ug/L of arsenic, 23.56 
g of zeolite, and a water flux rate of 51 L/(m2.h)) .......................................102 

Figure 71 - Non-linear curve fit model of case IX (84.3 ug/L of arsenic, 23.56 g of 
zeolite, and a water flux rate of 34 L/(m2.h)) ..............................................102 

Figure 72 - Non-linear curve fit model of case X (85.2 ug/L of arsenic, 23.56 g of 
zeolite, and a water flux rate of 51 L/(m2.h)) ..............................................103 

Figure 73 - Non-linear curve fit model of case XI (37.5 ug/L of arsenic, 23.56 g of 
zeolite, and a water flux rate of 34 L/(m2.h)) ..............................................103 



www.manaraa.com

 - viii - 

Figure 74 - Non-linear curve fit model of case XII (32.5 ug/L of arsenic, 23.56 g 
of zeolite, and a water flux rate of 51 L/(m2.h)) ..........................................104 

Figure 75 – Irreversible adsorption model of case I (140.6 ug/L of arsenic, 11.78 g 
of zeolite, and a water flux rate of 34 L/(m2.h)) ..........................................109 

Figure 76 - Irreversible adsorption model of case II (147.6 ug/L of arsenic, 11.78 
g of zeolite, and a water flux rate of 51 L/(m2.h)) .......................................110 

Figure 77 - Irreversible adsorption model of case III (81.1 ug/L of arsenic, 11.78 g 
of zeolite, and a water flux rate of 34 L/(m2.h)) ..........................................110 

Figure 78 - Irreversible adsorption model of case IV (81.5 ug/L of arsenic, 11.78 
g of zeolite, and a water flux rate of 51 L/(m2.h)) .......................................111 

Figure 79 - Irreversible adsorption model of case V (34.7 ug/L of arsenic, 11.78 g 
of zeolite, and a water flux rate of 34 L/(m2.h)) ..........................................111 

Figure 80 - Irreversible adsorption model of case VI (30.2 ug/L of arsenic, 11.78 
g of zeolite, and a water flux rate of 51 L/(m2.h)) .......................................112 

Figure 81 - Irreversible adsorption model of case VII (141.7 ug/L of arsenic, 
23.56 g of zeolite, and a water flux rate of 34 L/(m2.h))..............................112 

Figure 82 - Irreversible adsorption model of case VIII (138.9 ug/L of arsenic, 
23.56 g of zeolite, and a water flux rate of 51 L/(m2.h))..............................113 

Figure 83 - Irreversible adsorption model of case IX (84.3 ug/L of arsenic, 23.56 
g of zeolite, and a water flux rate of 34 L/(m2.h)) .......................................113 

Figure 84 - Irreversible adsorption model of case X (85.2 ug/L of arsenic, 23.56 g 
of zeolite, and a flux water rate of 51 L/(m2.h)) ..........................................114 

Figure 85 - Irreversible adsorption model of case XI (37.5 ug/L of arsenic, 23.56 
g of zeolite, and a water flux rate of 34 L/(m2.h)) .......................................114 

Figure 86 - Irreversible adsorption model of case XII (32.5 ug/L of arsenic, 23.56 
g of zeolite, and a water flux rate of 51 L/(m2.h)) .......................................115 

Figure 87 - Composite breakthrough comparison of actual versus modeled data 
for all runs..................................................................................................116 

Figure 88 - Alpha correlation to arsenic feed concentration..........................................118 
Figure 89 - Beta correlation to saturation time .............................................................120 

Figure 90 - Beta correlation to the inverse saturation time............................................120 
Figure 91 - Correlation of saturation time to operational parameters ............................122 

Figure 92 - Estimated breakthrough curve for example model calculation....................124 

Figure 93 - Kinetic rate for copper (I) modified chabazite in de-ionized water, 1st 
order...........................................................................................................138 

Figure 94 - Kinetic rate for copper (I) modified chabazite in de-ionized water, 2nd 
order...........................................................................................................139 



www.manaraa.com

 - ix - 

Figure 95 - Kinetic rate for ferrous chloride modified chabazite in de-ionized 
water, 1st order ...........................................................................................139 

Figure 96 - Kinetic rate for ferrous chloride modified chabazite in de-ionized 
water, 2nd order...........................................................................................140 

Figure 97 - Kinetic rate for ferrous sulfate modified chabazite in de-ionized water, 
1st order......................................................................................................141 

Figure 98 - Kinetic rate for ferrous sulfate modified chabazite in de-ionized water, 
2nd order .....................................................................................................142 

Figure 99 - Kinetic rate for copper (I) chloride modified chabazite in tap water, 1st 
order...........................................................................................................143 

Figure 100 - Kinetic rate for copper (I) chloride modified chabazite in tap water, 
2nd order ...................................................................................................144 

Figure 101 - Kinetic rate for ferrous chloride modified chabazite in tap water, 1st 
order.........................................................................................................144 

Figure 102 - Kinetic rate for ferrous chloride modified chabazite in tap water, 2nd 
order.........................................................................................................145 

Figure 103 - Kinetic rate for ferrous chloride modified chabazite in dechlorinated 
tap water ..................................................................................................146 

Figure 104 - Kinetic rate for ferrous sulfate modified chabazite in dechlorinated 
tap water ..................................................................................................146 

Figure 105 - Kinetic rate determination for ferrous sulfate modified chabazite in 
different source waters .............................................................................147 

Figure 106 - Effect of flux on arsenic breakthrough at 30 µg/L and 11.78 g of 
zeolite ......................................................................................................148 

Figure 107 - Effect of flux on arsenic breakthrough at 80 µg/L and 11.78 g of 
zeolite ......................................................................................................149 

Figure 108 - Effect of flux on arsenic breakthrough at 140 µg/L and 11.78 g of 
zeolite ......................................................................................................150 

Figure 109 - Effect of flux on arsenic breakthrough at 30 µg/L and 23.56 g of 
zeolite ......................................................................................................151 

Figure 110 - Effect of flux on arsenic breakthrough at 80 µg/L and 23.56 g of 
zeolite ......................................................................................................152 

Figure 111 - Effect of flux on arsenic breakthrough at 140 µg/L and 23.56 g of 
zeolite ......................................................................................................153 

Figure 112 - Arsenic breakthrough with 11.78 g of zeolite and a flux rate of 34 
L/(m2.h) ...................................................................................................154 

Figure 113 - Arsenic breakthrough with 11.78 g of zeolite and a flux rate of 51 
L/(m2.h) ...................................................................................................155 



www.manaraa.com

 - x - 

Figure 114 - Arsenic breakthrough with 23.56 g of zeolite and a flux rate of 34 
L/(m2.h) ...................................................................................................156 

Figure 115 - Arsenic breakthrough with 23.56 g of zeolite and a flux rate of 51 
L/(m2.h) ...................................................................................................157 

 



www.manaraa.com

 - xi - 

 
 

 

LIST OF NOMENCLATURE 

Symbol Units Definition 

α µg/L predicted initial permeate concentration 

a m2/m3 zeolite area per bed volume 

A g/s rate of change in molar mass inside the zeolite 

Am m2 membrane area 

ap mm particle radius 

asat m2 saturated surface area of zeolite 

As(θmax)  
correction function accounting for neighboring retained 

particles 

β 1/min predicted rate of increase in permeate concentration 

b # Langmuir equilibrium parameter 

Cc % particle volume fraction in the cake layer = (1 - ε ) 

C
e mg/L concentration of adsorbate in solution (mg/l) 

CE µg/L final equilibrium concentration inside the zeolite 

Cf µg/L feed concentration 

CM µg/L instantaneous concentration inside the zeolite 

Cp µg/L permeate concentration 

Cz,sat µg/L saturation concentration in the zeolite 

D # 

particle diffusion coefficient which by the Stokes-Einstein 

equation = 
pa

kT
πµ6

 

cδ  mm cake layer thickness 



www.manaraa.com

 - xii - 

dt
dM M  g/s change in molar mass of arsenic inside the zeolite 

δsat mm depth of the saturation zone 

E(τ)  residence time distribution function 

τ
MC

e
−

 # 
acceleration of change in molar mass uptake inside the 

zeolite 

J g/m2/h Flux 

Jw L/(m2.h) Water Flux, with abbreviated units of  lmh 

k J/K Boltzmann Constant 

k m/s mass transfer coefficient 

K
d
 # distribution coefficient

 

K
L # 

Langmuir constant related to adsorption /desorption energy 

(l of adsorbent per g of adsorbate) 

Kw L/(m2.h)/bar pure water mass transfer coefficient 

Mc # total # of particles per unit area of membrane 

mp g total dried mass of cake 

Mz g Mass of Zeolite in Reactor 

n, K
f
 # 

Freundlich empirical constants dependent on several 

environmental factors and n is greater than one. 

Q  
Gal/min or 

L/min 
flow rate 

qe µg/g equilibrium adsorption capacity in batch reactor 

Q
e µg/g adsorption density (mg of adsorbate per g of adsorbent). 

qm µg/g maximum adsorption capacity from Langmuir model 

Q
max µg/g 

maximum adsorption capacity corresponding to complete 

monolayer coverage (mg of solute adsorbed per g of 

adsorbent) 

 
 

 

 

 



www.manaraa.com

 - xiii - 

( )rq iP ,,, θτ  g/m3 solid-phase concentration of organic in the pore of PAC 

that resided in the contactor for τ  and enters at time θ  into 

the UF loop. 

( )rq iTP ,, τ  g/m3 solid-phase concentration of organic in the PAC 

r mm radial distance 

pρ  g/m3 density of particle 

ε % void fraction or solution volume per bed volume 

s m2 surface area of the zeolite 

τ  min hydraulic retention time 

t min represents the time from the beginning of the cycle 

T K Absolute Temperature 

Tm min mean hydraulic retention time in the UF loop 

TMP psi or bar transmembrane pressure 

tsat min time to reach saturation 

v ft/s or m/s feed velocity 

vsat ft/s or m/s saturated wave front velocity 

0y  g/s initial change in molar mass inside the zeolite 



www.manaraa.com

 - xiv - 

 

 

 
MATHEMATICAL MODEL OF ARSENIC ADSORPTION 

 IN A MODIFIED ZEOLITE / MICROFILTRATION SYSTEM 

 
 

Miles B. Beamguard 
 

 

ABSTRACT 
Carcinogenic health concerns over arsenic in drinking water caused the USEPA to reduce 

the maximum contaminant level (MCL) from 50 to 10 ppb, effective on January 23, 

2006. This has forced many smaller utilities into expensive treatment or discontinuation 

of water distribution. Researchers throughout the world are working to develop an 

inexpensive method for arsenic removal to meet this MCL. 

Aluminum silicates, or zeolites, are naturally occurring ionic sorbents. Modification of a 

zeolite may enhance adsorption capacities and ion selectivity. This research investigates 

the arsenic adsorption capacities of a modified Chabazite. This adsorption, coupled with a 

hollow fiber, microfiltration membrane substrate, allows for the use of finer zeolite 

particles.  Powdered zeolite creates a cake layer on the filtration surface through which 

the arsenic solution must filter. 

The research goal was to develop an overall mathematical model for the adsorption of 

arsenic through the adsorption equilibrium isotherms, the cake layer, and the 

microfiltration operational settings.  Baseline adsorption isotherms where performed in 

distilled water.  Solutions containing counter ions were then used to determine any 

counter-effects. The final isotherms were found using dechlorinated tap water, which is 

similar to many groundwaters found in the United States.  Various runs were used to 

determine the most efficient modification and loading rate. 
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Initial characterization of the membrane system defined membrane permeability and 

inherent arsenic rejection. Variable mass loading in both deadend and crossflow filtration 

determined that the cake layer was not compressible due to linear pressure increases.  

This process also determined the maximum cake layer permissible hydraulically on the 

membrane surface.   Membrane system operational characteristics and arsenic dosing 

were chosen to adhere to these parameters as well as the adsorption isotherms. 

Adsorption runs were conducted which varied the flux through the membrane, the arsenic 

feed concentration, and the cake layer thickness.  Through the data collected, a 

mathematical model based on irreversible adsorption was developed. 

This novel approach to arsenic removal and the predictive mathematical model can be 

used as an effective method for removal of aqueous arsenic, and may provide small water 

utilities with a cost effective way to meet the recommended new MCL. 
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INTRODUCTION 
On the earth’s surface arsenic represents nearly 0.00005% of the total mass making it the 

20th most abundant element found in the earth’s crust (Gulledge, 1973).  While highly 

prevalent in soil, arsenic can also be found in water.  In most natural waters the arsenic 

usually occurs in two inorganic forms, specifically arsenic trioxide, As(III), and arsenic 

pentoxide, As(V).  As(III) usually exists as a single ionic species while As(V) may exist 

in two species at a neutral pH and are predominantly in the form of H3AsO3 , and H2AsO4
- 

and HAsO4
2-, respectively. 

Due to its presence in water, the natural method of human exposure is through ingestion.  

While both arsenic trioxide and pentoxide can result in cancerous and non-cancerous 

health effects, the oxidation of As(III) within the body poses a serious health concern 

(NRC, 1999). Following the publishing of these findings the USEPA reclassified arsenic 

as a Class A carcinogen. The findings suggested that long term exposure to low arsenic 

levels (less than 50 ppb) contributed to detrimental health effects, including skin, bladder, 

kidney, and lung cancer, as well as other complications to the epidermal, neurological 

and cardiovascular systems. While exposure to acute high levels of arsenic can cause 

more immediate health effects, these are uncommon in the US and it was thus decided to 

lower the long term exposure (USEPA, 2000). 

To lower the chronic exposure to arsenic, the USEPA reduced the MCL of arsenic in 

drinking water from 50 ppb to 10 ppb.  As of January 23, 2006, all public water utilities 

were to meet this standard, terminate distribution of water exceeding the MCL, or apply 

for an extension due to implementation of treatment.  While larger systems have the 

capital to add a treatment process to an existing system for polishing, smaller systems 

with minimal treatment do not.  Of the systems affected by the new MCL, 93.6% of these 

fall into the category of small systems, or systems with less than 10,000 connections.  For 

these systems it is paramount that effective and affordable treatment technologies are 

developed.  To date, arsenic treatment developments have mainly focused on larger 
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centralized systems or the household point-of-use type system.  The implementation of 

either of these can be both time consuming and financially burdening, but must be done 

to meet the new MCL. 

Some of the technologies which are currently available include: coagulation/precipitation, 

ion exchange, adsorption processes, and reverse osmosis. While each of these processes 

is effective in removal of As(V), few have shown to be effective in removal of As(III).  

Materials that have shown As(III) sorption capacity include activated alumina; iron 

media (granular ferric hydroxide, iron oxide coated sand, iron pyrites), synthetic ion 

exchange resins, and fly ash.  Zeolites, which are naturally occurring aluminum silicates, 

have also shown a high affinity for sorption of As(III).  It has been shown that by copper 

or iron treatment of zeolites, the sorption capacity for arsenic may be greatly enhanced 

(Vakharkar, 2005). 

Adsorptive media such as zeolites are normally used in a column configuration through 

which the contaminated water is passed.  These columns, while effective, hydraulically 

require the use of granular size media.  This size is important so that the bed does not 

have too high of a headloss and so that it is stable both in filtration as well as when it 

must be regenerated.  Use of a smaller grain size would increase the number of available 

adsorptive sites per surface area for arsenic adsorption; however this is not feasible with a 

column.   

Similar adsorptive materials such as activated carbon have also been used in columns for 

removal of organics.  A higher surface area version of activated carbon is powder 

activated carbon (PAC) which is usually applied in slurries within a mixing process and 

must be filtered out at a later stage in the treatment process.  An alternative to this 

adsorptive train was introduced in the 1990’s by Aquasource, a membrane manufacturer.  

Their membrane with a nominal pore size of 0.1 microns could be used to filter out the 

PAC from water.  This allowed the PAC to be fed directly into the feed stream and then 

removed in one step.  This process of filtration for removal of PAC results in the 

formation of a cake layer on the membrane surface and thereby creates a layer of 

adsorptive material through which the adsorbate must pass.  Based on this methodology, 

it stands to reason that a powderized zeolite cake layer on a membrane would be an 
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effective method for treatment of arsenic.  If effective, a predictive model would be 

necessary to ensure that the system would meet the desired effluent and determine the life 

expectancy of the cake layer.  
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RESEARCH AND OBJECTIVES 
The primary objectives of this research were to develop an effective adsorptive process 

for arsenic removal and a model which predicts process performance.  To accomplish 

these objectives, successive experiments were conducted to develop an adsorptive media, 

define membrane system characteristics, and determine arsenic removal using the 

zeolite/membrane system.  Each of these tasks was broken into the following subtasks: 

1. Develop adsorptive media 

a. Modify the zeolite using a copper or iron solution 

b. Conduct equilibrium and kinetic studies using the modified zeolites in de-

ionized water 

c. Conduct equilibrium and kinetic studies in dechlorinated tap water and 

ground water which assesses the competitive adsorption capacity for 

arsenic in the presence of other species  

d. Conduct equilibrium and kinetic studies for arsenic adsorption using 

modified zeolites in presence of other competing ions like chlorides, 

hydroxides and sulfates using a matrix of low and high concentrations of 

the competing species. 

e. Define the governing isotherms and pick the best candidate for further 

work 

2. Define the membrane characteristics 

a. Develop system which was hydraulically similar to a full scale system 

b. Determine initial permeability of the membrane 

c. Develop cake formation characterization through variable mass loading 
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d. Determine dosing objectives to meet adsorption isotherms previously 

determined 

3. Determine the arsenic removal using the zeolite/membrane system 

a. Determine the impact of flux rate by varying the feed flow rate 

b. Determine the impact of the thickness of the cake layer by varying the 

amount of zeolite added to the membrane reactor 

c. Determine the impact of arsenic concentration in the reactor by changing 

the feed concentration 

Once the data from the zeolite/membrane experiments were analyzed, existing adsorption 

models were used to evaluate the data and operational conditions.  Trying to fit this data 

to a known model aided in the understanding of the fundamentals which governed the 

adsorptive process.  These fundamentals, while important to the physical meaning of the 

process, do not aid the general utility manager in development of a useful tool for 

removal of arsenic from their water.  To accomplish this objective, the model needed to 

be based on measurable quantities which are available through normal facility operations.  

These quantities being the arsenic entering their facility, the flow rate through their 

facility, and the amount of adsorptive material the facility would need to use.  

Understanding the importance of each of these and their relationship with the overall 

arsenic removal capacity was necessary to provide a working tool for small systems. 
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LITERATURE REVIEW 

Development of a new method for arsenic removal required background research in 

several key areas.  Those being: 

1. Arsenic Occurrence - To determine how prevalent the element exists in nature 

2. Arsenic Chemistry - To examine the relevant functional groups 

3. Methods and Costs Associated with Arsenic Treatment - To quantify the costs 

estimated for arsenic removal and to review current and possible methods for 

arsenic removal 

4. Background on Adsorption Isotherms - To understand how arsenic removal 

through adsorption would be quantified 

5. Cake Layer - To review known methods for determining the cake layer thickness 

where adsorption will occur 

6. Membrane with Adsorbent Models - To provide possible systems of equations for 

modeling the new zeolite/membrane process 

 

Arsenic Occurrence 

Arsenic (As) is a metalloid, which has an atomic number of 33. Having many allotropic 

forms, it is regularly present as yellow, black, or grey solids.  Although its presence is not 

uniform around the world, countries which have levels high enough to cause concern 

include USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, 

Hungary, Japan, and India (Robertson, et al., 1986). 

Arsenic in the United States is most prevalent around areas where lumber is produced, 

but is also seen quite often in areas of agriculture such as Florida where arsenic was used 

in a cattle dip for screw worms and in central California where it was dispersed in 
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pesticides.  Figure 1 shows the arsenic occurrence found in groundwaters around the 

country.  The figure clearly shows many water sources which exceed the MCL.  

 

Figure 1 - Occurence of arsenic in groundwater in the United States 

(Figure adopted from USGS National Water Quality Assessment, 2001) 

 

Natural inorganic arsenic is found in two oxidation states, arsenite (As(III)) and arsenate 

(As(V)).  In natural waters arsenite usually is present as a nonionic arsenious acid 

(H3AsO3), while arsenate occurs in two anionic forms (H2AsO4
 - and HAsO4 2-) (Clifford 

and Lin, 1995).  Groundwaters, which are oxygen deficient, usually contain the reduced 

form of arsenic, As(III).  In surface waters the arsenite is usually oxidized to arsenate at a 

relatively slow rate.  Treatment of these waters differs due to the different speciation, and 

in most instances As(III) must first be oxidized to As(V) prior to some type of filtration, 

coagulation, or adsorption.  
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Arsenic Chemistry 

The most common mineral form of arsenic is arsenopyrite (FeSAs).  When this substance 

is heated the arsenic sublimes and leaves the ferrous sulfide.  Once sublimated it is free to 

enter other phases of the environment; typically mobilizing in groundwater.  

Understanding the oxidation and reduction reactions of arsenic and how these two species 

exist in water is paramount to developing remediation treatments (Croal, 2006).  Arsenite 

is slightly soluble in water in the form of arsenious acid (HAsO2). The dissolution 

reaction for As(III) is as given below: 

 

  As2O3 + H2O 2HAsO2  (Pontius, 1994) 

 

As(V), the oxidized form of arsenic trioxide, forms arsenic acid (H3AsO4) in water, 

 

  As2O5 + 3H2O  2H3AsO4   (Pontius, 1994) 

 

The rate of oxidation of arsenic (III) to arsenic (V) is rapid at high and low pH ranges but 

proceeds much slower in the neutral pH range (Sorg, 1978).  While some microorganisms 

are able to methylate arsenic into other organic and inorganic compounds, this process is 

not thermodynamically favored and thus does not play a large role in the alteration of the 

oxidation states (Pierce, 1980).  

Arsenate, As(V), has a net negative ionic charge at neutral pH as seen in Figure 2.  By 

having a charge, many ion exchange processes are able to effectively reduce this form of 

arsenic. The speciation percentage versus pH is shown in Figure 3.  At a neutral pH of 7 

approximately 36.5% of the arsenic is present as H2AsO4
 - and approximately 63.5% as 

HAsO4 2-.   Temperature also may impact this speciation. 
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Log Concentration vs pH for As(V)
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Figure 2 - Log concentration vs. pH for As(V) 
 



www.manaraa.com

 - 10 -  

Speciation Percentage vs. pH for As(V)
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Figure 3 - Speciation percentage vs. pH for As(V) 
 

In Figure 4 and 5 the concentration and the speciation of As(III) is shown, where at a 

neutral pH of 7 over 99.4% of the arsenic exists as H3AsO3 with only 0.58% as the ionic 

species (H2AsO3 -).   
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Log Concentration vs pH for As(III)
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Figure 4 - Log concentration vs. pH for As(III) 
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Speciation Percentage vs. pH for As(III)
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Figure 5 - Speciation percentage vs. pH for As(III) 

 

Without an ionized arsenic species, arsenic is difficult to remove by chemical coagulation 

or reverse osmosis.  With this in mind and based on the speciation of As(III) it is 

necessary to either first oxidize the As(III) to As(V) or raise the pH of the water to 

increase ionization.  Depending on the buffering capacity of the water, it may be cost 

prohibitive to raise the pH to 9.23 just to remove 50% of the arsenic.  An alternative 

method is to oxidize As(III) in the water using free chlorine as shown in the following 

reaction. 

 

AsO3
3- + H2O  AsO4

3- + 2e- + 2H+ 

HOCl + 2e- + H+  Cl- + H2O   

HOCl + AsO3
-3  AsO4

-3 + Cl- + H+ 

 

This oxidation process results in the addition of chloride to the water and the reduction in 

pH.  Unfortunately the HOCl may also interact with organics and form disinfection by-
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products (DBPs) or oxidize other metals resulting in a higher chlorine demand.  Other 

downstream processes, like Reverse Osmosis, may also be chemically incompatible with 

an oxidant residual. 

 

Methods and Costs Associated with Arsenic Treatment 

When the USEPA recently reduced the maximum contaminant level (MCL) of arsenic in 

drinking water from 50 µg/L to 10 µg/L there was a drastic change in the number of 

utilities faced with providing treatment. When the MCL was set at 50 µg/L only 0.51% of 

all Community Water Systems (CWS) were over the standard.  With the new MCL, 

6.18% of all CWS have water services exceeding the 10 µg/L MCL.  This 6.18% or 3034 

CWS must implement additional treatment or find alternative water sources now that the 

2006 deadline has past (USEPA, 2004).  Table 1 charts these 3034 CWS by their number 

of connections and source water. 

Table 1 - Utilities over the 10 µg/L arsenic MCL 

Utility 

Size 

<100 101-

500 

501-

1000 

1001-

3300 

3301-

10K 

10K-

50K 

50K-

100K 

100K-

1M 

Ground 

Water 

874 934 312 424 218 144 19 11 

Surface 

Water 

10 18 11 23 16 13 3 4 

Total 884 952 323 447 234 157 22 15 

Adapted from http://www.epa.gov/safewater/ars/prop_ria.pdf 

 

As can be seen from Table 1, 2936 CWS or 96.7% have ground water supplies which 

usually indicates the arsenic will probably be present in its reduced state (As(III)).  Over 

93% of the utilities affected are classified as “Medium water systems” or smaller (less 

than 10,000 people). Even more disturbing than this is the fact that over 60% of the total 

number of affected systems fall into the “Very Small water system” classification which 
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have less than 500 people (USEPA, 2004).  This means the largest portion of utilities 

affected have the smallest group of individuals to defray capital improvement costs.  The 

mean annual household water bill increase in order to meet the new standard 

implementing current technologies is shown in Table 2 for the same utility sizes 

previously described. 

Table 2 - Annual mean household cost for meeting 10 µg/L arsenic MCL 

Utility 

Size 

<100 101-

500 

501-

1000 

1001-

3300 

3301-

10K 

10K-

50K 

50K-

100K 

100K-

1M 

Total 

Cost, $ 357.17 246.38 98.35 56.51 37.04 29.13 22.80 18.32 33.65 

Adapted from http://www.epa.gov/safewater/ars/prop_ria.pdf 

 

In order to meet the new MCL, small utilities must find alternative sources or more 

economic ways of removing the arsenic present in their water. 

While several technologies which can effectively remove arsenic from water exist, such 

as reverse osmosis, ion exchange, coagulation/precipitation, and adsorption; for 

communities without significant resources, adsorption processes seem to be the most 

practical approach.  Adsorption can occur on many mediums such as fly ash, activated 

alumina, and iron fillings.  This process may be centrally located in a plant consisting of a 

series of columns or a cartridge under the sink as a point of use device. Both of these 

options represent a financial burden to the community and require an engineering study 

to develop the chemistry to make the system work. 

In order to select a treatment process for the community an engineering firm must 

establish the design criteria based on the community’s specific needs.  To do this, they 

must know their maximum daily flow rate, an average daily flow rate, the historic level 

of arsenic in their water, the desired finished water quality, and the cost of other 

consumables (USEPA, 2000). 
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Coagulation and Precipitation 

The most common method for removal of arsenic in the United States is through 

coagulation and precipitation with metal salts such as aluminum or iron (Buswell, 1943).  

During this process the arsenic is removed through three main mechanisms (Edwards, 

1994): 

1. Precipitation: the formation of the insoluble compounds Al (AsO4) or Fe 

(AsO4). 

2. Co-precipitation: the incorporation of soluble arsenic species into a growing 

metal hydroxide phase. 

3. Adsorption: the electrostatic binding of soluble arsenic to the external surfaces 

of the insoluble metal hydroxide. 

Of these mechanisms, co-precipitation and adsorption tend to dominate the removal 

process.  Once adsorbed or co-precipitated the complex is either filtered or allowed to 

settle.  Some lighter complexes such as arsenic with hydrous aluminum oxide (HAO) or 

hydrous ferrous oxide (HFO) may remain suspended in the water.  Studies have 

demonstrated that coagulation and sedimentation alone only removed 30% of the arsenic; 

while after filtering through a 1.0 micron filter more than 96% of the arsenic was 

removed (Hering, Sancha, 1999b).  Table 3 below presents several coagulation studies 

with various coagulants and forms of arsenic.  While As(V) was removed at a neutral pH, 

to remove As(III) the pH had to be raised to 11.8 to achieve this level of removal. 
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Table 3 - Summary of arsenic removal by coagulation studies (Forlini, 1998) 

Coagulant Dosage Influent 

Arsenic 

Concentration 

(mg/L) 

pH Form 

of 

Arsenic 

Lowest 

Achievable 

Arsenic 

Concentration 

Reference 

Hydrated 

Lime 

Ca (OH) 2 

N/A 0.075 11.1 As(V) 0.004 mg/L 
McNeil, 

1994 

Ferric 

Sulfate 

Fe2 (SO4) 3 

10-50 

mg/L 
0.020 5-8 As(V) 0.001 mg/L 

Gulledge, 

1973 

Alum  

Al (OH) 3 

10-50 

mg/L 
1.6  5-8 As(V) 0.013 mg/L 

Gulledge, 

1973 

Ferric 

Chloride 

FeCl3 

3-10 

mg/L 
1.6 

7.18

-7.8 
As(V) 0.074 mg/L 

Scott, 

1995 

Hydrated 

Lime 

Ca (OH) 2 

1250 

mg/L 
0.59-0.60 11.8 As(III) 0.060 mg/L 

Dutta, 

1991 

 

Adsorption Processes and Materials 

Adsorption occurs when an adsorbate, which can either be a liquid or gas, accumulates on 

the surface of an adsorbent, either solid or liquid, and forms an atomic or molecular film. 

This physical/chemical process is a consequence of surface energy and can occur in a 

coagulation step or on a fixed media.  Since this bonding is on the surface sites of the 

media, the greater the surface area per gram, the larger the capacity of adsorption media.  

These adsorbents can be developed from numerous natural and manmade media and vary 
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in size, chemical composition, regeneration requirements, cost, and affinity for various 

molecules.  Some of these adsorptive materials are describe in detail below. 

 

Ion Exchange 

Ion exchange, IX, is a process in which ions are exchanged from a solution phase into an 

insoluble solid resin or gel.  Originally natural zeolites were used as ion exchange 

materials, but synthetic ion exchange resins are now more common and are typically 

fabricated from an organic polymer substrate.  Most of these polymers are crosslinked 

polystyrene which is usually accomplished through the addition of divinyl benzene to 

styrene.  Typically these resins are housed in a column where the arsenic laden water is 

forced to pass.  As(V) can be removed through the use of a strong base anion exchange 

resin (SBR) in either hydroxide or chloride form.  Unfortunately, while these resins can 

effectively remove As(V) in the pH range of 6.5 – 9.0, they are ineffective at removal of 

As(III) (Clifford et al., 1998). Similar to other processes, specific ions have a selectivity 

for removal by ion exchange.  Competing ions such as sulfates, nitrates, selenium, and 

fluorides can reduce the amount of As(V) that may be removed as well as increase the 

frequency of regeneration.  Typically the IX columns are placed at the tail end of a plant 

to reduce competing anions.  Due to its effective removal abilities, the USEPA feels that 

most systems which have low sulfates (<120 mg/l) and low total dissolved solids (TDS) 

can feasibly implement ion exchange treatment (NWRA 2001). 

The use of ion exchange resins must be carefully maintained in order to keep the bed 

from running to exhaustion.  If this occurs or an ion such as sulfate is dramatically 

increased in the water, arsenic can re-release into the water at levels greater than the 

initial feed stream.  Typical resins have a greater affinity for sulfate removal and since 

typical waters contain sulfate concentrations greatly exceeding that of arsenic, careful 

monitoring of its concentration must be upheld.  The preferential ions for the resin 

exchange are listed below: 

 

SO4 2- > HAsO4 2- > NO3 
-, CO3 2- > NO2

 - > Cl – 
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Once the IX bed is exhausted it must be regenerated.  The waste from this process 

contains extremely high levels of arsenic.  Due to the difficulty in disposal of this waste, 

USEPA does not consider ion exchange for Point of Use/Point of Entry (POU/POE) 

compliance to the MCL (Kempic J.B. et.al, 2000).  While ion exchange is highly 

effective, studies are still being conducted to improve this process such as indefinite 

regeneration, As(V) selective resins, and continuous counter current ion exchange.  Due 

to the lack of As(III) removal, ion exchange resins were not suitable as an adsorptive 

media for this research. 

 

Activated Alumina 

Activated alumina (AA) is manufactured by dehydroxylating aluminum hydroxide to 

form a highly porous media which can have a surface area of over 200 m2/g.  It is used 

primarily as a desiccant but has also been shown to effectively remove arsenic from water 

(Wikipedia, 2006).  Currently AA is considered the best sorbent for arsenic removal 

however it preferentially removes fluoride ions. 

Similar to IX, the AA is used in packed columns where the contaminated water is passed 

through in down flow or upflow modes.  The pH of the water is maintained between 5.5 

and 6.0 to increase its affinity for arsenic.   

Competing ions also affect AA in a similar manner as IX; however, the selectivity of 

these ions is quite different as seen below.  

 

OH - > H2AsO4 - > Si (OH) 3O - > F - > HSeO3 - > TOC > SO4 2- > H3AsO3 

 

Like IX, AA is efficient at removal of As(V) but at pH levels below 9.2 it is fairly poor at 

removing As(III).  Raising the pH to above 9.2 is counterproductive as the AA prefers 

hydroxide to As(III), therefore pre-oxidation of As(III) to As(V) is necessary for effective 

treatment.  Figure 6 demonstrates how this increase in pH dramatically reduces filter run 
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times.  Based on the pH requirements as well as the greater selectivity for fluorides and 

sulfates, AA was an unacceptable media for further research. 

 

 
Figure 6 - Effect of pH on activated alumina performance (USEPA, 2000) 

 

Granular Ferric Hydroxide 

Granular Ferric Hydroxide (GFH) which was developed at the Technical University of 

Berlin, Department of Water Control is a promising adsorptive media for arsenic 

removal.  According to a recent study by Banerjee, et al. (2002), the removal of arsenic 

by GFH was not pH dependent in the range 5 to 7.5.  Figure 8 also shows that at a arsenic 

concentration of approximately 80 µg/L and a GFH concentration of 500 mg/L 

approximately 100% of both As(III) and As(V) is removed. 
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Figure 7 - Effect of pH on arsenic removal by GFH (Banerjee et al. 2002) 

 

Banerjee et al. concluded that GFH was capable of reducing the concentration of arsenic 

in water below new MCL of 10 µg/L. They also found that the adsorption rate was 

dependent on reaction pH, media dosage, particle size, and water quality. 

Another study by Simms (2000) reported that a 5.3 MGD GFH plant located in the 

United Kingdom reliably and consistently reduced the average influent arsenic 

concentrations of 20 µg/L to less than 10 µg/L for 200,000 Bed Volumes (BV) (over a 

year of operation) at an empty bed contact time (EBCT) of 3 minutes.  The arsenic 

adsorbs onto the surface of the grains of ferric hydroxide forming a ferric-arsenic 

complex.  The operating costs of this system are about $0.10 – $0.25 per thousand 

gallons treated depending on the influent arsenic concentration.  

The greatest deterrent to widespread use of GFH is the media cost.  At nearly $4000/ton 

it is much more expensive then AA.  This cost is mitigated however due to the longer 

runtimes and smaller reactor volumes of GFH versus AA.  Another benefit as noted by 
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Banerjee et al. is that As(III) does not need to be oxidized to As(V) for removal, which 

results in a reduced chemical cost.  

 

Iron Oxide Coated Sand and Iron Oxide Coated Fiberglass 

Iron oxide coated sand and iron oxide coated fiberglass were developed as another media 

for metal adsorption.  Both use fixed bed reactors and are effective for arsenic removal.  

When arsenic laden water reaches the media, hydroxides on the surface are exchanged for 

the arsenic. Joshi and Chaudhuri found the oxidation state of arsenic plays a role in its 

removal, As(V) appears to be more easily removed than As(III). Benjamin et al. (1998) 

also demonstrated that iron oxide coated sand sorbed As(V) faster than As(III).  Kumar et 

al. (2001) developed IOCFG as an alternative to IOCS and found that 13 times more iron 

was need to coat the sand in order to achieve the same arsenic removal.  While both of 

the processes have merit, their widespread use has not been witnessed. 

 

Pyrite Fines 

Pyrite (FeS2) is an isometric crystals which once powderized has a high surface area and 

shows an adsorption capacity for arsenic. Arsenic adsorption studies found that a 10 g/L 

concentration of pyrite removed 95% of As(III) from solutions when the pH was raised 

from 7 - 9.  It was also capable of removing 98% of As(V) from solutions having pHs 

ranging from 4 to 7.  Both of these processes require very short contact times required to 

achieve equilibrium (Zoboulis, 1993).  Due to the requirement of a higher pH for removal 

of As(III) Pyrite Fines were not considered for further research.  

 

Zeolites 

The term zeolite comes from the Greek words “zeo” (to boil) and “lithos” (stone) 

(Guisnet, 2002).  The first known documentation for a physical or chemical properties of 

a zeolite was made by Eichhorn around 1880 and was related to the cation exchange 

capability of the zeolite.  In 1945 Barrer introduced the first commercial application of 

zeolites in which he used Chabazite as a molecular sieve (Breck, 1979).  Advances over 
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the last 50 years have lead to significant breakthroughs in the basic knowledge of 

zeolites’ physical and chemical properties and their potential applications. 

It is now known that zeolites are hydrated aluminum silicates of the form (Shim et al. 

1999):  

 

[(Li, Na, K)a (Mg, Ca, Sr, Ba)d(Al(a+2d)Si(n)(a+2d)O2a)mH20] 

 

These colorless to red minerals are alterations of volcanic tuffs exposed to saline 

environments (Megamin, 2003, and Virta, 1996).  In the US the primary deposits are in 

Arizona, California, Idaho, Nevada, New Mexico, Oregon, Texas, Utah, and Wyoming.  

Along with the major zeolites of chabazite, clinoptilolite, mordenite, and phillipsite, other 

silica or volcanic glasses as well as minerals may be present.  Many times the zeolite 

content will be nearly 100% if the process of alteration has been nearly completed.  Of 

the zeolites mined in the US, chabazite and clinoptilolite make up nearly 52,800 tons 

annually.  Clinoptilolite is primarily mined in California, Nevada, New Mexico, Oregon 

and Texas while chabazite is mined in Arizona (Virta, 1996). 

Zeolites differ in chemical composition and structure that dramatically alter their 

applications and results.  Due to these variations, a zeolite may contain a charge or be 

neutral.  Most of the naturally occurring zeolites have negatively charged frameworks.  

These frameworks are composed of the three most common elements found in the Earth’s 

crust, aluminum, silica and oxygen.  Zeolites are more stable when their external 

frameworks are balanced by cations, which are normally monovalent or divalent ions 

such as Na+ and Ca2+ (Seff, 1996).  Due to the many varied configurations and chemical 

properties, any practical application which intends to use zeolites should first undergo 

extensive tests on a representative sample of the actual zeolite supply to ensure it meets 

specifications (Armbruster, 2001). 

Since chabazite was first discovered to have ion exchange capability, tremendous strides 

have been made in development of the many current uses and potential applications.  

These can mainly be summarized into three main categories; Adsorption, Ion Exchange, 
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and Catalysis.  The following table which categorizes zeolite applications was taken from 

(Breck, 1979) and reproduced. 

1. Adsorption 

a. Regenerative 

i. Separations based on sieving 

ii. Separations based on selectivity 

b. Purification 

c. Bulk separations 

d. Non-regenerative 

i. Drying 

ii. Windows 

iii. Refrigerators 

e. Cryosorption 

2. Ion exchange 

a. Regenerative processes 

i. NH4
+ removal 

ii. Metals separations, removal from waste water 

b. Non-regenerative processes 

i. Radioisotope removal and storage 

ii. Detergent builder 

iii. Artificial kidney dialysate regeneration 

iv. Aquaculture - NH4
+ removal 

v. Ruminant feeding of non-protein nitrogen 

vi. Ion exchange fertilizers 

3. Catalysis 

a. Hydrocarbon conversion 

i. Alkylation 

ii. Cracking 

iii. Hydrocracking 

iv. Isomerization 
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b. Hydrogenation and dehydrogenation 

c. Hydrodealkylation 

d. Methanation 

e. Shape-selective reforming 

f. Dehydration 

g. Methanol to gasoline 

h. Organic catalysis 

i. Inorganic reactions 

i. H2S oxidation 

ii. NH3 reduction of NO 

iii. CO oxidation 

iv. H2O → O2 + H2 

 

4. Other applications involve replacing the balancing cation with HDTMA.  In this 

configuration the zeolite has the potential to possibly adsorb ground water 

contaminants such as PCE. 

5. Another example in the waste industry is the removal of ammonium from waste 

water.  Upon removal, the zeolite is regenerated with NaCl/KCl and an 

Ammonium-Phosphate is left.  This media can then be used as fertilizer. 

6. NASA currently uses zeolite for treatment of waste water in space. 

7. When Chernobyl had a catastrophic failure, the Soviet Union brought in 500,000 

tons of zeolite to try and abate the movement of radiation into water sources. 

8. Also potential zeolites if charged with Silver could allow for ion exchange of E. 

coli. (Armbruster, 2001). 

9. Zeolitic membranes as seen below can improve the fashion in which gases are 

separated (Exter, 1996). 

 

One of the most heavily mined zeolite in the United States is clinoptilolite.  With a 

structure similar to that of heulandite, clinoptilolite has approximately 15 to 20 m2 of 

surface area per gram (Ouki, 1999).  This naturally pale green zeolite has a silica to 
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aluminum ratio of 6.  While the internal structure has a net negative charge, clinoptilolite 

balances this predominantly by adding Na+ and K+ (Megamin, 2003).  The most common 

form of clinoptilolite has the chemical formula of: 

 

(Na,K)6Si30Al6O72*nH2O 

 

Normally clinoptilolite is found in locations where it is at 60-90% purity making mining 

and process relatively easy.  For this reason mining of this zeolite has been increasing at a 

rate of 10% a year and typically sells for $50 to $300/ton depending on the purity and 

quantity.  The basic framework of heulandite and clinoptilolite are similar and a 

representation of this is shown below (Armbruster, 2001). 

 

 
Figure 8 - Basic framework of heulandite (Armbruster, 2001) 
 

The various polymorphs of alumina and silica form rectangular pores of approximately 

3.0 x 7.6 Angstroms in size (Chon, 1996).  This structure does not provide the same large 

internal cavity as other zeolites such as chabazite. Below are a picture of a clinoptilolite 

crystal, another structural representation of its framework, and an Atomic Force 

Microscopy (AFM) image. 
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Figure 9 - Clinoptilolite crystal from http://mineral.galleris.com 
 

 

 
Figure 10 - Clinoptilolite structure and AFM (Occelli, 1994) 
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Another heavily mined zeolite in the US is chabazite.  The structural framework of 

chabazite is pictured below (Guisnet, 2002). 

 

 
Figure 11 - Structural framework of chabazite (Guisnet, 2002) 
 

As can bee seen from the structure, chabazite is a caged zeolite.  This caged structure 

provides a pore size of approximately 3.8 by 3.8 Angstroms (Chon, 1996).  Throughout 

extensive testing this caged structure has shown a large capacity for ion exchange.  For 

example it has a far greater iron removal capability than greensand or clinoptilolite even 

after several regenerations.  In column studies, it has been shown that this ion exchange 

capability for iron and manganese dominates oxidation and adsorption as the flow rates 

through the media increase (Aiello, 1979). Many feel this high ion exchange capability is 

a result of the high silica content of chabazite and the relatively large cavity to pore size 

ratio (Harris, 1994); however clinoptilolite has a Si/Al ratio of 6 while chabazite is only 

4.  Chabazite, as seen in Figure 12, is normally a clear to white crystal. 

 
Figure 12 - Chabazite crystal from http://mineral.galleris.com 
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Under a scanning electron microscope these crystals are look much more uniform and 

regular (Kirkov, 1994). 

 
Figure 13 - SEM of chabazite (Kirkov, 1994). 
 
These regular crystals, which normally have a Si/Al ratio of 3.5 to 4.5, hydrate 

spontaneously under ambient conditions.  Upon dehydration it was shown that chabazite 

maintained its framework.  To maintain its charge balance the normally negatively 

charged zeolite normally in the calcium form.  It has been demonstrated that the enthalpy 

of hydration becomes less exothermic as the water content in the zeolite decreases (Shim, 

1999). 

One of the most common uses of zeolites is the removal of iron from water and 

wastewater.  Ouki tested this removal ability on waters containing high levels of metals 

to determine which metals were more likely to be removed (Ouki, 1999).  Ouki used both 

chabazite and clinoptilolite with particle sizes of less than 150 microns.  0.5 g of each 

zeolite was placed into 100 ml of a solution containing seven metals.  The concentration 

of metals in this solution ranged from 1 to 30 mg/L.  These solutions were maintained at 

a pH of 5 and equilibrium calculations were performed at time 1 to 240 minutes as well 

as after 24 hours.  His results showed that chabazite had a larger ion exchange capacity 

than clinoptilolite for the selected metals.  He estimates that greater than 90% of the 

removal was achieved during the first five minutes of contact for the chabazite, while the 

clinoptilolite took approximately 15 minutes to achieve the same level of removal.  The 

data also suggested that 10 mg/L was the optimum metal concentration based on the 0.5 

mg of zeolite.  These results can be seen in the following graphs: 
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Figure 14 - Metals removal from water using chabazite (Ouki, 1999) 
 

For chabazite the order of rejection best follows: Pb>Cd>Zn>Co>Cu>Ni>Cr. 

 

 
Figure 15 - Metals removal from water using clinoptilolite (Ouki, 1999) 
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For clinoptilolite the order of rejection best follows: Pb>Cu>Cd>Zn>Cr>Co>Ni (Ouki, 

1999). 

Although metal removal as described previously occurs as a cation exchange mechanism, 

arsenic remains undissociated, so a molecular complex sorption mechanism must be used 

for arsenic removal (Gonzalez and Mattusch, 2001).  Pretreatment of the zeolite with 

Copper or Iron can enhance the adsorption capacity of the zeolite for arsenic. Literature 

review suggests only one report concerning arsenic removal using the natural zeolites 

clinoptilolite and chabazite (Carnahan, Forline, Bonnin, 2001). 

 

Membrane Separation 

The term Reverse Osmosis, RO, is derived from its counterpart osmosis.  Osmosis is a 

thermodynamic property and a measure of the colligative property of the solution. It is 

characterized by the natural tendency of a solvent to move from an area of low 

concentration to an area of high concentration. When a semi-permeable polymeric 

membrane is placed between two solutions of different concentrations, a pressure will be 

seen as the two waters try to equilibrate.  This pressure is called the osmotic pressure.  

Applying a pressure greater than the osmotic pressure to the higher total dissolved solids 

(TDS) side will force water to diffuse into the lower TDS side causing the net osmotic 

pressure to further increase.  Osmotic pressures vary considerably from fresh waters to 

seawater and consequently the pressures needed to filter water.  Operating pressures as 

low as 30 psi can exist for some low TDS waters while pressures approaching 1000 psi 

are commonplace in seawater applications. 

Since the creation of RO, several other membrane technologies have been developed.  

Figure 7 relates the size of common materials ranging from sand to dissolved salts to its 

filtration counterpart.  While RO is able to remove nearly everything from water the 

pressures are sometimes too high for the necessary level of treatment.  Nanofiltration 

(NF), with an approximate pore size of 10-9 meters, was developed to operate at less than 

200 psi.  They can remove nearly all divalent salts and organics and are primarily used to 

soften waters. 
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Figure 16 - Membrane separation compared to size of common materials (Osmonics, 2004) 

 

Membranes themselves differ from manufacturer to manufacturer with each having a 

nominal molecular weight cutoff (MWC).  Those with a low MWC are able to separate 

solutions of monovalent ions at a greater degree than those with higher MWC.  A typical 

MWC for an RO membrane is approximately 100 Dalton.  A Dalton is a representative 

measure of a single molecule based on its molar weight (MW).  For example, water 

whose MW is approximately 18 g/mole, is referenced as 18 Dalton.  Sodium, MW = 23 

Dalton, hydrates with 6 water molecules and therefore has a total MW of 131 Dalton.  

Unlike cations such as Sodium, anions do not hydrate as much.  Chloride, for example 

only hydrates with 3 water molecules providing it with a MW of 89.5 Dalton.  Due to this 

MW it passes through an RO membrane more readily.  Likewise As(V) being charged 

also binds with water and is rejected nearly completely by a tight RO membrane.  As(III), 

being uncharged, does not hydrate well and consequently is too small to be rejected 

completely by the RO membrane.  In studies arsenic removal was found to be 

independent of pH and competitive ions, but somewhat dependent upon temperature. 
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Removal efficiencies were in range of 75% for As(III) and 95% for As(V) (Kang, 

Kawasaki, et.al, 2000).  

Leaching of arsenic into the finished water is not expected since RO membranes do not 

typically sorb arsenic.  Also oxidation and pH adjustment are not required for arsenic 

removal, thereby making the system user friendly.  Based on these factors, RO has merit 

as a point-of-use technology; however, due to their inherent costs, low water recovery 

rates, and higher operating pressures, it is typically more cost effective to place the RO 

process at a centralized location. 

Ultrafiltration (UF) and microfiltration (MF) have pore sizes of 10-8 meters and 10-6 

meters, respectively.  These membranes are typically used to remove particulate matter.  

As seen in Figure 7, each process has a range of sizes that it excludes.  This is owed to 

the casting of the membrane and polymer itself.  Due to the pore size and overall lower 

operating pressures when compared to NF and RO, MF and UF represent applicable 

separation processes for the removal of the developed adsorptive material.  For this 

reason they were chosen for further research. 

Microfiltration and ultrafiltration are hollow fiber polymer membranes that remove 

primarily suspended solids from water.  Polymers used for production of these 

membranes include cellulose acetate derivatives (CA), polypropylene (PP), polysulfone 

(PS), polyether sulfone (PES), and polyvinylidene fluoride (PVDF).  MF, with a nominal 

pore size of 0.1 µm, was first introduced by Memtec in the early 1980s and was first 

installed into a drinking water plant in 1987.  UF, which has a nominal pore size of 0.01 

µm was developed by Suez Lyonnaise des Eaux in the 1980s and saw its first US plant 

placed into production in 1988.  Since their inception, the proliferation of MF and UF 

into the US water treatment market has been exponential as depicted in Figure 17.  
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Figure 17 - MF and UF installed capacity in USA (Lozier, J., CH2M-Hill, 2001) 

 

New regulations for Cryptosporidium and Giardia set by the EPA in the 1990s are 

probably the greatest reasons for this large increase in capacity.  Since both 

Cryptosporidium and Giardia are greater than 0.1 µm in size they are rejected by the MF 

and UF membranes. 

MF and UF can operate in dead-end mode where all water entering the membrane leaves 

as permeate or in cross-flow mode where a portion of the water not passing through the 

membrane is mixed with the feed water again.  Typically cross-flow is implemented 

when the level of suspended solids is high or when a greater contact time is needed 

before permeation.  Permeation can occur with flow from the inside to the outside of a 

fiber (inside-out) or from the outside into the inside of the lumen (outside-in).  Outside-in 

is preferential in high solids loading due to reduced risk of plugging of the heads of the 

fibers.  The configuration for MF and UF systems can vary substantially, but the majority 

fall into two categories, pressurized and submerged. 
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A scanning electron microscope (SEM) view of a UF membrane is seen below in Figure 

18.  This membrane feeds water through the inside of the fiber and permeates out through 

its walls.  The membrane pores are asymmetrical in an effort to reduce the headloss 

incurred during permeation.  This membrane is also double walled around this porous 

area which allows the membrane to be backwashed.  During this process water is passed 

through the membrane in the opposite direction of normal permeation to remove the 

buildup of filtered material. 

 
Figure 18 - Cross section of UF membrane under SEM (Mallevialle, 1996) 

 

MF and UF, due to their pore size, which are several orders of magnitude greater than an 

arsenic molecule, are not inherently able to the contaminant from water.  Studies 

(Vagliasindi, 1998) have been conducted by feeding a ferric coagulant or a ferric 

hydroxide fine into the feed which have demonstrated removal, but operational 

conditions governing the process were not well documented. 

As a separation process with an absolute pore size, MF and UF can be used to remove 

fine particulates such as a powderized zeolite which is placed into the membrane housing 

or reactor.  This allows for an extremely fine powder which has a high surface area to be 

retained on the membrane surface.  This rejection of fines results in a cake layer forming 

on the surface of the membrane.  Once formed any adsorbate entering the system must 

pass through the zeolite cake layer before entering the permeate stream. 
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Background on Adsorption Isotherms 

Adsorption is an essential method for contaminant removal, but understanding of the 

physiochemical properties governing the reaction is needed to optimize the process.  By 

evaluating the kinetics and equilibrium of a reaction an operational guideline may be 

produced.  Kinetic studies determine the rate at which the process approaches equilibrium 

and is used to determine the adsorption coefficient and the reaction constant, while 

equilibrium studies give the capacity of the adsorbent (Ho, 1995) for specific 

contaminants.  While there are many experimental isotherms used in practice, the 

Freundlich and Langmuir isotherms are the most predominant in water treatment 

(Muhammad, Parr et al., 1998). 

  

Freundlich Isotherms  

In 1894, Freundlich and Küster developed their isotherm which was initially used to 

describe the equilibrium of gaseous adsorbates and was later applied to liquid systems in 

1906.  This equation is often expressed by:  

Q 
e 
= K

f 
C

e 

1/n 
(Casey, 1997)  

where:  

Q
e 
is the adsorption density (mg of adsorbate per g of adsorbent).  

C
e 
is the concentration of adsorbate in solution (mg/l).  

K
f 
and n are the empirical constants dependent on several environmental factors 

and n is greater than one.  

 

The equation can be linearized by taking the logarithm of both sides: 

  

Log Q
e 
= Log K

f 
+ 1/n Log C

e 
 

 

If a plot of Log C
e 
vs. Log Q

e
 results in a straight line, then the Freundlich Isotherm is an 

accurate description of the adsorption process.  The inverse slope and the intercept of this 
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line represent the two equilibrium constants n and Kf which denote the sorption intensity 

and the sorption capacity, respectively (Weber et al., 1991). Large values of n denote that 

large changes in equilibrium concentration will not affect the adsorption on the 

adsorbent. If n is equal to 1, the partitioning between the solid and liquid phase is linear 

and Freundlich coefficient (K
f
) can be viewed as a distribution coefficient K

d
. Although 

the Freundlich model applies to high adsorbate concentrations well, it is excellent at 

predicting lower concentration reactions.  

 

Langmuir Isotherms  

In 1916 Irving Langmuir published a new isotherm which was derived from a kinetic 

mechanism.  It is based on the following four assumptions: 

• The adsorbent surface is uniform 

• Adsorbed molecules do not interact with others 

• All adsorption occurs by the same mechanism 

• At final adsorption a monolayer is formed and molecules can not be deposited on 

top of this monolayer  

 

The Langmuir isotherm can be described by the following equation:  

 

C
e
/Q

e 
= 1/ (Q

max
. K

L
) + C

e
/Q

max
 

where:  

Q
e 

is the adsorption density at the equilibrium solute concentration C
e 

(mg of 

adsorbate per g of adsorbent)  

C
e 
is the concentration of adsorbate in solution (mg/l)  

Q
max 

is the maximum adsorption capacity corresponding to complete monolayer 

coverage (mg of solute adsorbed per g of adsorbent)  

K
L 

is the Langmuir constant related to adsorption /desorption energy (l of 

adsorbent per g of adsorbate)  
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Plotting C
e
/Q

e 
versus C

e 
should yield a linear line if the assumption of a Langmuir 

isotherm is correct.  From the intercept and slope of this line the Langmuir constants of 

the maximum adsorption capacity, Q
max

, and the adsorption energy, K
L 

, can be 

determined, respectively. 

 

Cake Layer 

Literature review of cake formation inside of a membrane reactor led to several studies 

including: 

Faibish (Faibish et al., 1998) studied removal of colloidal suspensions using a cross flow 

membrane.  From their work they developed the following equation for estimating cake 

layer thickness which led to a means of projecting flux decline: 

 

c

p

c M
a



















−
=

ε

π
δ

1
3
4 3

        Equation 1 

Where: 

cδ = cake layer thickness 

pa = particle radius 

ε  = cake porosity or void fraction 

And cM  = total # of particles per unit area of membrane 

 

Choi (Choi et al., 2000) developed a more basic model for estimating the thickness of the 

cake using microspheres in a microfiltration process.  In this model they assumed a 

homogeneous cake layer and were able to simplify their expression for cake layer 

thickness to: 
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= volume of cake per area of membrane  Equation 2 
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Where: 

pm = total dried mass of cake 

pρ = density of particle 

And mA = membrane area 

 

Work by Hong (Hong et al., 1997) in removal of colloidal suspensions using a cross flow 

system, included a diffusion term in the cake layer thickness model. 
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Where: 

D = particle diffusion coefficient using the Stokes-Einstein equation = 
pa

kT
πµ6

 

( )maxθsA  = correction function accounting for neighboring retained particles 

cC = particle volume fraction in the cake layer = (1 - ε ) 

k = Boltzmann Constant 

T = Absolute Temperature 

 

The correction function can be calculated as follows: 
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       Equation 4 

Then using Happel’s Cell Model 
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With an assumed maximum random sphere distribution provides: 

( ) 22.123
86.0

36.0

max

max

=
=

=

θ
θ
ε

sA
 

 

Substituting these values into Equation 3, Hong simplified the original cake layer model 

to the following: 
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      Equation 5 

 

Membrane with Adsorbent Models 

Reddad (Reddad et al., 2003) studied the adsorption of cadmium and lead onto a natural 

polysaccharide in a membrane reactor.  They found that the equilibrium conditions were 

best described by the Langmuir isotherm equation as shown below:  

e

em
e bC

bCq
q

+
=

1
         Equation 6 

Where: 

eq = equilibrium adsorption capacity in batch reactor 

mq = maximum adsorption capacity from Langmuir model 

b  = Langmuir equilibrium parameter 

eC = metal concentration at equilibrium 

 

Matsui (Matsui et al., 2000) studied the removal of organic compunds by PAC using a 

UF system.  The system was assumed to be hydraulically similar to a CSTR.  This model 

states: 
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Where: 

( )rq iTP ,, τ  = solid-phase concentration of organic in the PAC 

r = radial distance 

τ = hydraulic retention time  

PACC  = PAC concentration 

PACR  = PAC average radius 

and ( )τE  = residence time distribution function 

 

Applying a pore surface diffusion model (PSDM) to this model with the initial and 

boundary conditions of: 

 

( )rq iTP ,, τ  = 0 for τ =0 and ( ) iTiTP CrC ,, , =τ  for t>0 and r = R results in: 
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  Equation 8 

Where: 

( )rC iTP ,, τ = concentration of organics in the pore of PAC with a detention time of τ  

iPD ,  = pore diffusion coefficient of organic 

iSD ,  = surface diffusion coefficient of organic 

 

If the PAC is added continuously, a mass balance on the system provides the following 

system model: 
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          Equation 9 

Where: 

mT = mean hydraulic retention time in the UF loop 
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Q  = flow rate 

cQ  = cross-flow rate 

( )rq iP ,,, θτ  = solid-phase concentration of organic in the pore of PAC that resided in the 

contactor for τ  and enters at time θ  into the UF loop. 

 

Li (Li et al., 2003) also investigated the use of PAC for removal of organic matter using 

microfiltration as the separation process.  Contrary to Reddad, Li based his model on a 

Freundlich Isotherm.  His model derivation begins with the Freundlich Isotherm: 
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Incorporating multi-solutes for competitive adsorption and then rearranging to find the 

equilibrium concentration of a single solute results in: 
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For a system containing two solutes, s and t, the equilibrium concentrations can be 

written as: 
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Rearranging and solving for q results in: 

 

t

tn

s

sn

n
teq

t

s

t

s

t

s
t

t

n
seq

s

t

s

t

s

t
s

s

C

q
q

n
n

q
qK

q

C

q
q

n
n

q
qK

q

1
,

1

1
,

1

1

1

1

1

+









+

=

+









+

=

       Equation 13 

 

A mass balance on the system provides: 
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Where: 

sC ,0 = initial concentration of solute s 

seqC , = equilibrium concentration of solute s 

sq = the kinetic coefficient of solute s 

cC = concentration of adsorbent 

tC ,0 = initial concentration of solute t 

teqC , = equilibrium concentration of solute t 

tq = the kinetic coefficient of solute t 

 

Li states that if the concentration in the liquid phase is much less than that adsorbed then: 
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If you substitute this into the original equations for q you arrive at: 
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If you divide each solutes’ q by the equilibrium concentration term you arrive at the 

competitive adsorption Freundlich coefficient. 
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If the initial concentration of one is much greater than the other, ie. C0,s>>C0,t, then this 

can be simplified to: 
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METHODS AND MATERIALS 

Materials 

Table 4 summarizes the equipment used in the modification of the zeolite, the jar testing 

for kinetic and equilibrium tests, microfiltration studies, and analysis. 

 
Table 4 - Materials list 

Material Specification Quantity Resource 

Zeolite Na - chabazite, -40 Mesh 20 lb. GSA Resources 

Arsenic Arsenic Trioxide, 99.9% 100 g Fisher Scientific 

Jar Testers Compact Laboratory Mixers, 1L 2 ECE Engineering

UV Spectrophotometer Hach DR4000 1 Hach 

pH Meter Oaktron Ion 510 Series 1 Cole-Parmer 

AA PSA Excalibur AFS 1 University 

Distiller Corning MP-3A 1 University 

Pan Balance Mettler AE 260, 100 g max 1 University 

Oven Blue M Stabil-Therm Gravity Oven 1 University 

Sieves Soiltest, 100, 200, and 400 mesh 1 University 

Syringes BD 20ml Syringes 160 Cole-Parmer 

Arsenic Sample Vials Passport IP2, 30ml, HDPE 72 Cole-Parmer 

Membrane Hydranautics, 0.85 m2 1 Hydranautics 

Membrane Vessel 2” Clear PVC 3 ft Barnes Industrial 

Membrane Skid 0.254 gpm Automatic Skid 1 AES Engineering
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A more comprehensive description of the chabazite and chemicals used in the 

modification and jar testing studies is listed below: 

Chabazite Zeolite: The chabazite, a -400 mesh sodium zeolite, was purchased from GSA 

Resources, Tucson, Arizona. The chabazite was obtained in 20 lbs container. The 

material safety data sheet (MSDS) for the chabazite is listed in Appendix C. 

Arsenic: The laboratory grade arsenic was granular and was purchased from Fisher 

Chemicals Co, in form of arsenic trioxide (As2O3) (99.9%). A stock solution of As(III) 

was prepared using “Standard Methods for Water and Wastewater, 19th Edition, 1995”.  

The method used to prepare this stock solution and the analysis of arsenic is provided in 

Appendix A. 

Copper Chloride: Copper (I) chloride, which was used to modify the chabazite, was 

purchased from Acros Organics Co., in form of copper (I) chloride (95%). The 

modification concentration was 0.01 M. 

Ferrous Chloride: Ferrous chloride, which was used to modify the chabazite, was 

purchased from Fisher Chemicals Co., in form of iron (II) chloride tetrahydrate 

(FeCl2.4H2O). The modification concentration was 0.1 M. 

Ferrous Sulfate: Ferrous Sulfate, which was used to modify the chabazite, was purchased 

Acros Organics Co., in form of iron (II) sulfate heptahydrate reagent ACS (FeSO4.7H2O). 

The modification concentration was 0.1 M. 

 

Methods 

The experimental methods for this research can be subdivided into the following tasks: 

1. Modification of the Zeolite 

2. Kinetic and Equilibrium studies 

3. Sampling Procedure and Analytical Methods 

4. Microfiltration Baseline Qualification 

5. Microfiltration with Zeolite Studies 
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Modification of the zeolite, kinetic and equilibrium studies were performed in 

conjunction with Ashutosh Vakharkar and may also be found within his Master’s Thesis 

entitled Adsorption Studies For Arsenic Removal Using Modified Chabazite (Vakharkar, 

2005). 

 

Modification of the Zeolite 

The modification chemicals were prepared separately in polycarbonate batch reactors 

using DI water at concentrations of 0.01 M, 0.1 M, and 0.1 M for Copper (I) Chloride, 

Iron (II) Chloride, and Iron (II) Sulfate, respectively.  The solutions were allowed to mix 

at 300 rpm for a period of 30 minutes to ensure a complete dissolution.  High purity 

sodium chabazite, an aluminum-silicate zeolite which has been dried, reactivated using a 

sodium solution, and then allowed to equilibrate with air was purchased in 20 lbs drum 

from GSA Resources. Zeolite was weighed using a Mettler AE 260 Delta Range 

Analytical Balance, Figure 19, and added to the batch reactors at a concentration of 5 g/L.  

The batch reactor, Figure 20, was then covered and allowed to mix for a period of 24 

hours at a rate of 300 rpm.  

 

 
Figure 19 - Mettler AE 260 Delta Range Analytical Balance 
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Figure 20 - Batch reactors for pretreatment of chabazite using various reagents 

 

Upon completion of the 24 hour modification period, the solutions were rinsed with DI 

water and then sieved through a 400-mesh sieve, Figure 21.  This modified zeolite was 

then added to a Pyrex drying tray, Figure 22, and placed in a Blue M Stabil-Therm 

Gravity Oven, Figure 23, at a temperature of 103o C for a period of 2 hours.  Once dried 

the final modified zeolite was weighed, labeled, and stored in desiccators for future use. 

 

  
Figure 21 -  400 mesh sieve 
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Figure 22 - Modified chabazite in Pyrex drying tray 
 

 
Figure 23 - Blue M Stabil Therm Gravity Oven used for drying of treated chabazite 

 

Comparative pictures, Figures 24-26, of the non-modified and modified zeolite for each 

of the chemicals are presented below. 

 
Figure 24 - Chabazite before and after copper (I) chloride modification 
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Figure 25 - Chabazite before and after iron (II) chloride modification 

 

 
Figure 26 - Chabazite before and after iron (II) sulfate modification 

 

Kinetic and Equilibrium Studies 

Kinetic Studies 

The kinetic studies were carried out in ECE Compact Laboratory Mixers. For 

these tests, 100 µl of standard arsenic trioxide solution was added to 3 jars filled 

with 1 liter of de-ionized/dechlorinated tap water/pre-chlorinated groundwater. 

0.5 g of the treated chabazite was measured using a Mettler AE 260 Delta Range 

analytical balance and added to each of three 1 L jars, (A, B, and C) of the 

laboratory mixer. 
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Figure 27 - Kinetic studies jar tester configuration 

 

The kinetic tests were run for a period of 6 hours at speed of 180 rpm.  During 

this 6-hour test run, 20 ml sample was pulled from jar A for arsenic analysis.  At 

the same time, 20 ml was taken from Jar B and injected into jar A to maintain the 

same solid /solution ratio. Similarly, 20 ml was transferred from jar C to jar B for 

the same reason. Sampling frequency for the kinetic runs was as follows: 

1. 5 mins interval for the first 30 min. 

2. 10 mins interval from 30 to 60 min. 

3. 15 mins interval from 60 to 120 min. 

4. 1 hr interval from 120 to 360 min. 

 

Equilibrium Studies 

The batch equilibrium studies involved using identical volumes and concentration 

of arsenic exposed to different quantities of adsorbent. For equilibrium tests, each 

of the 6 jars was prepared at an initial As(III) concentration of 100 µg/L using de-

ionized water, dechlorinated tap water, or unchlorinated ground water. Sequential 

amounts of copper or iron treated chabazite (0.25, 0.5, 0.75, 1.0, and 2.0 g/L) 
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were measured using a Mettler AE 260 Delta Range analytical balance and added 

to the jars. One jar served as a control in order to detect any adsorption of arsenic 

on to the jars. Simultaneous runs for Cu treated and Fe treated zeolites were 

conducted at a speed of 180 rpm. The batch equilibrium tests were performed for 

6 hrs period with samples taken at time 0 min (prior to zeolite addition) and time 

360 mins. 

 

Long Term Equilibrium Studies 

Long term equilibrium studies for adsorption were performed for a period of 90 

days. For long term equilibrium studies, 100 µl of arsenic trioxide solution was 

added to 12 dark colored glass bottles containing 1 L of dechlorinated tap water. 

Different amounts of copper or iron treated chabazite (0.25, 0.5, 0.75, 1.0, and 2.0 

g/L) were measured and added to the dark colored bottles. One bottle served as a 

control in order to detect any adsorption of arsenic on to the glass bottle. These 

sample bottles were stored in a refrigerator at a temperature of 4OC and were 

shaken every 10 days. The initial and final pH of the solution was measured.  

 

Sampling Procedure and Analytical Methods 

All samples (20 ml) were filtered using a 0.45 µm Fisher brand Nylon filter into a 

Nalgene passport IP2 Narrow mouth HDPE bottles. The bottles were acidified with 200 

µl of concentrated HCl acid to obtain a pH of 2.5-3 and then stored at 4oC until arsenic 

analysis could be performed.  These samples were then analyzed for arsenic species using 

Atomic Absorption Spectroscopy.   

Initial analysis was performed using the Atomic Adsoprtion (AA) machine from the 

Geology department.  The calibration curve for the AA is shown below in Figure 29. 
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Figure 28 - Geology Lab AA 

 

 
Figure 29 - Calibration curve for Geology Lab AA 
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Subsequent samples, following initial runs, were conducted on the Graphite Furnace 

Atomic Adsorption Spectrophotometer housed in Dr. Trotz’s lab at USF. 

 

 
Figure 30 - Varian SpectrAA Zeeman Graphite Furnace 

 

Microfiltration Baseline Qualification  

The membrane system, Figure 31, was built by American Engineering Services and 

implemented a single outside-in membrane element.  This element implements a 

microfiltration membrane from Hydranautics which has a surface area of 0.85 m2.  This 

system was capable of running at varying flux rates, cross flow rates, and cycle times.  

Setpoints specified by the membrane manufacturer and common to low pressure 

membrane systems were used to ensure that the system performed in a similar manner to 

a full scale plant.  
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Figure 31 - Membrane system 
 
 
Initially the pure water mass transfer coefficient (Kw) for the membrane was established 

by reducing the water flux rate in consecutive cycles and measuring the resulting 

transmembrane pressure.  A single cycle flux decline test is shown in Figure 32 while a 

multiple cycle is shown in Figure 33.  These tests are performed by allowing the system 

to stabilize at a flux, measuring the operational pressures, and then lowering the flux and 

repeat this process.  A multiple cycle indicates that a backwash was performed prior to 

the reduction of the flux rate. By plotting the Temperature Corrected Flux against the 

Transmembrane Pressure (TMP) and evaluating the slope of the line which best intersects 

these points Kw may be determined.  This resulted in a Kw of approximately 11 and 10 

gfd/psi for the single and multiple cycle flux decline tests, respectively. 
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Single Cycle Flux Decline Test
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Figure 32 - Single cycle flux decline test 
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Multiple Cycle Declining Flux Test
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Figure 33 - Multiple cycle declining flux test 
 

Following the pure water test, the water was dosed from a stock solution of arsenic and 

samples were taken of the feed and permeate water streams to determine the inherent 

membrane rejection without the zeolite addition.  As seen in Figure 34, there membrane 

was not able to reduce the arsenic entering the permeate stream. 
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Figure 34 - Inherent membrane rejection of arsenic 
 
Following this determination, studies were conducted to determine the effect of the 

addition of the zeolite and its impact on the cake layer formation and the resulting 

increase in TMP.  These mass loading studies were conducted by dosing a continuous 

stream of a slurry of modified zeolite into the feed stream and resulting operational 

conditions.  A picture of the membrane reactor is shown in Figure 35 and 36 which 

demonstrate the membrane as it is initially receiving the zeolite and then just prior to 

backwash as the cake layer has reached its thickest. 
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Figure 35 - Initial cake deposition 
 

 
Figure 36 - Final cake deposition 
 
 
The results from the cake studies were used to determine the amount of cake which could 

be added to the reactor without significantly impacting the overall membrane 
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performance.  As can be seen in Figure 37, the Kw or permeability was reduced by nearly 

0.8 gfd/psi with the addition of 0.5 g/L of zeolite. 
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Figure 37 - Permeability changes due to cake layer formation 
  

 
Microfiltration with Zeolite Studies 

Based on the equilibrium and cake layer studies as well as the operational parameters 

governed by maintaining a scalable system, the experimental matrix for the arsenic 

removal using the ferrous sulfate modified zeolite on the microfiltration substrate was 

defined in Table 5. 
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Table 5 - Operational matrix for modified zeolite/membrane substrate studies 
  Zeolite Mass, g   

  11.78 23.56   

140 I VII 34 (0.482) 

140 II VIII 51 (0.723) 

80 III IX 34 (0.482) 

80 IV X 51 (0.723) 

30 V XI 34 (0.482) 

Arsenic Feed 

Concentration, 

µg/L 

30 VI XII 51 (0.723) 

Water Flux 

Rate, 

l/(m^2*h), 

(L/min) 

 

By adding either 11.78 or 23.56 g of ferrous sulfate modified zeolite to the membrane 

reactor prior to starting the flow of arsenic and maintaining a flux rate of either 34 or 51 

L/(m2.h) (liters per square meter per hour) the zeolite concentration ranged from 0.25 g 

to 1.0 g per liter of water filtered, Table 6. 

 
Table 6 - Zeolite mass per volume of filtered water in reactor 

Flux Rate, L/(m2.h) Zeolite Addition, g Zeolite Mass per Volume of 

Filtered Water, g/L 

34 11.78 0.5 

51 11.78 0.25 

34 23.56 1.0 

51 23.56 0.5 

 

Once the system was started, the arsenic was dosed using a LMI pump into the feed 

stream to reach feed concentrations ranging from 30 to 140 µg/L.  This process was the 

same for all 12 operational matrix settings.  Feed samples were collected at the beginning 

of the cycle, while permeate samples were collected at 5 minute increments following the 

hydraulic retention time to the sampling port which was estimated at 2 and 3 minutes for 

the flux rates of 34 and 51 L/(m2.h), respectively. 
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Once a cycle was completed, the system was backwashed and then the membrane reactor 

was disassembled, thoroughly rinsed with DI water and reassembled.  This was done to 

ensure that the system did not have any arsenic or zeolite left behind from previous runs. 
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RESULTS AND DISCUSSION 
The results are presented in the following sequential subtopics: 

1. Modification of Zeolite 

2. Freundlich and Langmuir Isotherm Equilibrium Studies 

3. Arsenic Removal Using a Zeolite/Membrane Reactor 

4. Development of Mathematical Model Describing This System 

 

Modification of Zeolite 

Modification of the zeolite with ferrous chloride, cuprous chloride, and ferrous sulfate 

was accomplished using the batch reactor as described in the Methods and Materials 

section.  5 g of chabazite was added to each liter of 0.1 or 0.01 N solution for a total of 20 

grams. The solubility of copper chloride prohibited a 0.1 N solution.  In order to 

determine the amount of uptake of the modification ions, samples of the cuprous chloride 

and ferrous sulfate solution prior to addition of chabazite as well as those before rinsing 

and after each rinse were analyzed and the results of which are shown in Table 7.  For the 

uptake calculations in mg of ion per gram of zeolite, the original mass was used to 

determine the original uptake prior to rinsing.  Following rinsing, the final dried mass 

was used to determine the loss due each successive rinse.  This assumes that all of the 

mass is lost during the initial rinse and none in subsequent rinsing, an assumption which 

seems valid based on visual inspection of the rinse supernatant where the zeolite was not 

found to subsequently pass through the mesh screen. 
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Table 7 - Modification of zeolite ionic results 

 Cuprous Chloride Ferrous Sulfate 

Time Copper Chloride Ferrous Sulfate 

Before, mg/L 419.50 252.00 540.80 1010.00 

Before, mmol/L 6.60 7.11 9.68 10.52 

After, mg/L 29.27 392.00 182.50 1276.00 

After, mmol/L 0.46 11.06 3.27 13.29 

% Uptake, (-x.x) = loss 93.02 (-55.56) 66.25 (-26.34) 

mg/g 19.51 (-7.00) 17.92 (-13.30) 

mmol/g 0.31 (-0.20) 0.32 (-0.14) 

After 1 Rinse 31.67 8.66 25.25 28.70 

mg/g left 15.11 (-8.20) 15.35 (-16.21) 

mmol/g 0.24 (-0.23) 0.27 (-0.17) 

% lost 22.54 (-17.18) 14.31 (-21.91) 

After 2 Rinse 9.35 0.73 5.18 2.56 

mg/g left 13.81 (-8.30) 14.83 (-16.47) 

mmol/g 0.22 (-0.23) 0.27 (-0.17) 

% lost 8.59 (-1.24) 3.43 (-1.60) 

After 3 Rinse 10.25 0.45 4.88 0.90 

mg/g left 12.39 (-8.37) 14.33 (-16.56) 

mmol/g 0.19 (-0.24) 0.26 (-0.17) 

% lost 10.31 (-0.75) 3.34 (-0.55) 
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Metallic ion uptake onto the zeolite is shown in the % Uptake row.  According to 

laboratory data, 93% of the available copper was taken up by the zeolite, while only 66% 

of the iron ions were adsorbed.  This corresponds to 19.5 and 17.9 mg per gram of zeolite 

for copper and iron respectively.  Interestingly, the mmol/g uptakes onto the zeolite are 

nearly identical at 0.31 and 0.32 mmol/g of copper and iron, respectively.  Chlorides and 

sulfates were actually released by the zeolite as the copper and iron were taken up.  For 

electro-neutrality, it must be assumed that hydroxide ions are also adsorbed onto the 

zeolite.  This assumption was verified through a decrease in pH in the solution of 

approximately 0.7 pH units. 

Rinsing of the modified zeolites resulted in a greater loss of copper than iron per gram of 

zeolite.  The final concentrations of copper and iron on the zeolites were 12.4 and 14.3 

mg/g, respectively.  This equates to a 0.19 mmol/g copper modified zeolite and a 0.26 

mmol/g iron modified zeolite. 

 

Freundlich and Langmuir Isotherm Equilibrium Studies 

Three different modified zeolites were used in adsorption studies to determine the most 

effective adsorbent.  This work was done in collaboration with Ashutosh Vakharkar and 

may be viewed in entirety within his Master’s Thesis; however a summary of these 

results are listed below with the method for determination listed in Appendix B. 

Integral method, due to its simplicity over more complicated graphical differential 

methods, was used for determining the kinetic order of reaction. This method fits 

elementary reactions such as: 

A  Products or A+B  Products 

Equilibrium data was analyzed using Langmuir and Freundlich isotherm equations. 

While Langmuir isotherms describe adsorption capacity as a monolayer, Freundlich 

isotherms describe solid-liquid heterogeneous reactions. 
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Kinetic and Equilibrium Studies in De-ionized Water 

Kinetic Studies 

Kinetic studies were conducted in de-ionized water at an arsenic concentration of 

100 ppb and a zeolite concentration of 0.5 g/L for a period of 6 hours.  This was 

used to determine the baseline kinetics without the effect of competing ions.  
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 Figure 38 - Kinetic runs for As(III) removal using a modified chabazite in DI water 

 

The kinetic runs demonstrate how fast the reaction proceeds towards equilibrium 

and may be used to determine the order of the reaction and the adsorption 

coefficient. The quantitative results of these runs are shown in Table 8. 
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Table 8 - Kinetic studies on DI water with concentrations of As(III) at 100 ppb and zeolite at 0.5 g/L  

Removal at 30 mins Removal at 360 mins 
Type of 

chabazite 

Initial 

concentration of 

arsenic (ppb) 
Concentration 

(ppb) 

% 

Removal 

Concentration 

(ppb) 

% 

Removal 

Copper (I) 

chloride 

modified 

chabazite 

100 58 42 % 38 62 % 

Ferrous 

chloride 

modified 

chabazite 

100 91 9 % 78 22 % 

Ferrous 

sulfate 

modified 

chabazite 

100 76 24 % 59 41 % 

 

Based on this data, the copper modified chabazite had the fastest rate for arsenic 

adsorption in DI water. A fit of these data points resulted in a second order 

regression represented by dCA/dt = kCA
2.  Based on a comparison of the ferrous 

modified chabazite, the chloride ion seems to hinder the adsorption kinetics when 

compared to the sulfate ion.  Therefore the use of a particular anion does 

influence adsorption kinetics. 
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Table 9 - Order of reaction and rate constants for modified chabazite in DI water 

Type of chabazite Rate constants 

(liter/mol.min) 

Rate equation 

Copper (I) chloride modified 

chabazite 

3e-05 rA= 3e-05CA
2 

Ferrous chloride modified 

chabazite 

7e-06 rA= 7e-06CA
2 

Ferrous sulfate modified 

chabazite 

1e-05 rA= 1e-05CA
2 

 

Equilibrium Studies 

Since the copper chloride and ferrous sulfate modified zeolites proved to have the 

fastest kinetics, equilibrium studies were then conducted to determine their 

maximum adsorption capacities. Data gathered from the 6 hour equilibrium runs 

were fitted to both Freundlich and Langmuir isotherm equations. The Langmuir 

isotherm equation, as seen in the figure below, provides the maximum adsorption 

capacity for monolayer coverage of the modified chabazite. 
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Figure 39 - Langmuir adsorption isotherm for modified chabazite in DI water 

 

A linear model of Freundlich isotherm, which provides the adsorption affinity, 

was fitted by plotting Log Qe and Log Ce in Figure 40. 
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Figure 40 - Freundlich adsorption isotherm for modified chabazite in DI water 

 

The maximum adsorption capacities and the Langmuir constants, KL, were 

determined from the intercept and slope of the zeolite’s linearized Langmuir 

isotherm. The Freundlich isotherm provides the maximum adsorption, k, and the 

adsorption intensity, 1/n, by analyzing the intercept and slope, respectively.   

 
Table 10 - Langmuir and Freundlich isotherm constants in DI water 

Langmuir constants Freundlich constants 

Type of modified chabazite Qmax 

(ppb/g) 

KL R2 k n R2 

Copper (I) modified 

chabazite 

477 0.058 0.70 31.31 1.77 0.80 

Ferrous (II) modified 

chabazite 

5000 0.31 0.76 6.49 1.29 0.79 
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Due to the solubility of copper, the copper modification of the zeolite took place 

at a lower concentration, 0.01N, which was only 10 percent of the normality of 

the ferric treatments, 0.1N. Table 10 indicates that the maximum adsorption 

capacity may be directly related to this as the ferrous zeolite had a capacity for 

arsenic over 10 times that of the copper. 

Based upon the analysis provided in Table 10, the equilibrium data fits Freundlich 

isotherms to a higher degree than Langmuir isotherms. Analyzing this data also 

shows that the Freundlich constants of k and n are higher for the copper chloride 

modified chabazite.  As mentioned previously, this may indicate that the 

adsorptive bond is stronger than that of the iron modified zeolite.  

 

Kinetic Studies for Determination of Effect of Stoichiometric Ratio 

In order to determine the effect of the stoichiometric ratio, cations:anions, two 

comparisons are made. The first compares the same anion with different cations and the 

second the same cations with a different anions.  Ashutosh Vakharkar presents more of 

this data in his master’s thesis, but a summary is included here for reference.  

1. Kinetic studies using chabazite modified with same anions of different cations 

(Cu:Cl::1:1) versus (Fe:Cl::1:2) in dechlorinated tap water.  The results, presented 

in Figure 41 and Table 11, demonstrated that the arsenic removal is nearly 

identical. 
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Figure 41 - Kinetic runs for As(III) adsorption using chloride salts of two metal ions in dechlorinated 
tap water 

 
Table 11 - Kinetic results using chabazite modified with same salt of different metals with 0.5 g/L of 
modified chabazite 

Removal at 30 mins Removal at 360 mins 

Type of chabazite 

Initial 

concentration 

of arsenic 

(ppb) 

Concentration 

(ppb) 

% 

Removal

Concentration 

(ppb) 

% 

Removal

Copper (I) 

chloride modified 

chabazite 

100 70 30 % 46 54 % 

Ferrous chloride 

modified 

chabazite 

100 76 24 % 48 52 % 
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Table 12 summarizes the arsenic removal of the copper (I) and iron(II) modified 

chabazite which fit a second order regression, dCA/dt = kCA
2. 

 
Table 12 - Reaction order and rate constants for chabazite modified with same salts of different 
metals 

Type of chabazite Rate constant 

(liter/mol.min) 

Rate equation 

Copper (I) chloride modified 

chabazite 

2e-05 rA= 2e-05CA
2 

Ferrous chloride modified 

chabazite 

4e-05 rA= 4e-05CA
2 

 

The reaction rate constant for copper modified zeolite is twice that of the ferrous 

modified zeolite.  In a ferrous chloride solution the ratio of chloride to ferrous is 

2:1, while in cuprous chloride it is 1:1.  This ratio seems to play a significant role 

in the rate of arsenic adsorption by the modified chabazites.  

2. Kinetic studies using chabazite modified with different salts of same metal were 

conducted using FeSO4 and FeCl2.  The results for kinetic studies, presented in 

Figure 42, indicate that the kinetics are similar for the first 30 minutes; however, 

while the ferrous sulfate modified zeolite continued to adsorb arsenic, the ferrous 

chloride modified zeolite had nearly reached equilibrium. These results are 

summarized in Table 13.  Concentrations were measured using the Zeeman 

GFAA. 
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Figure 42 - Kinetic studies for As(III) using different salts of same metal in dechlorinated tap water 

 
Table 13 - Results from kinetic studies using chabazite modified with different salts of same metal at 
0.5 g/L of modified chabazite 

Removal at 30 mins Removal at 360 mins 

Type of chabazite 

Initial 

concentration 

of arsenic 

(ppb) 

Concentration 

(ppb) 

% 

Removal

Concentration 

(ppb) 

% 

Removal

Ferrous chloride 

modified 

chabazite 

100 63 37 % 57 43 % 

Ferrous sulfate 

modified 

chabazite 

100 65 35 % 5 95 % 
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Linear regression of the reaction kinetics for the ferrous sulfate modified zeolite 

proved to be a good fit, R2 of approximately 85%, to a second order reaction.  The 

ferrous chloride modified zeolite was neither a good fit for either a first or second 

order reaction. 

The ratio of ferrous to the anion in ferrous sulfate is 1:1 whereas the ratio in 

ferrous chloride is 1:2. Earlier work on ionic uptake and release indicated that 

more chlorides are released by the natural zeolite into the water than sulfates.  

This coupled with the kinetic data infers that the chloride species in the 

modification slurry hinders the release of the zeolites’ chloride thereby preventing 

the zeolite from taking up ferrous and hydroxide ions. This process is further 

justified by the change in pH values before and after modification.  While the pH 

of the chloride solution was reduced by 0.14 pH units, the sulfate solution 

decreased by 0.7 pH units.  This indicates that much more hydroxide was 

removed from solution.  Following this logic, it is assumed that a greater quantity 

of the metal in the modification slurry was adsorbed onto the sulfate modified 

zeolite.  This indicates that if the arsenic removal is dictated by chemisorption, the 

anion used in the modification does play a critical role in the adsorption of the 

media. 

 

Relationship Between Mass of Zeolite and Arsenic Removal 

Equilibrium studies provide an idea of the amount of zeolite which must be fed into the 

membrane reactor to achieve adequate removal of the arsenic. Figure 43 depicts the 

relationship between the various masses of different zeolites and their removal efficiency. 
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Figure 43 - Relationship between As(III) removal and mass of zeolite 

  

It is clear from this figure that the ferrous sulfate modified zeolite has the highest 

adsorptive capability. While nearly all of the arsenic is removed at 2 g/L, there is no 

significant change after 1 g/L and very little after 0.75 g/L.  Between 90 and 95% of the 

100 ppb of the arsenic in solution is removed between these two values.  Based on this 

data, the ferrous sulfate modified zeolite was chosen to use in the membrane reactor at a 

concentration of up to 1 g/L. 

 

Uptake and Leaching Studies  

Uptake and leaching studies were conducted to ensure that the modified zeolite was 

chemically stable.  Tap water was analyzed both before and after the addition of the 

modified zeolite for cations typically found in tap water, as seen in Table 14. 
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Table 14 - Uptake data for metals used in modification of chabazite 

Metals analyzed Ca Cu Fe Mg 

Tap water (mg/L) 77.16  0.78  0.14  3.74  

Cu treated chabazite (mg/L) 73.17  0.46  0.06  3.97  

Uptake (Leaching) 3.99  0.31  0.08 (0.24) 

% Uptake (Leaching) 5.17  40.34  57.66  (6.34) 

          

Tap water (mg/L) 77.16  0.78  0.14  3.74  

Fe treated chabazite (mg/L) 70.93  0.31  0.07  3.71  

Uptake (Leaching) 6.23  0.47  0.07  0.03  

% Uptake (Leaching) 8.07  60.70  50.36  0.80  

 

It was observed that none of the metals, except for 0.24 mg/L of Manganese in the copper 

modification, leached in the solution. On the contrary, the modified zeolite actually 

adsorbed some calcium, less than 10%, but a much higher uptake of copper and iron, 

from 40 to 60%.  From these results we can conclude that the copper and iron used for 

modification have a strong bond to the zeolite and are therefore safe to use for further 

work. 

Previous work performed by Carnahan et al. (2001) demonstrated that when arsenic was 

adsorbed onto the zeolite, the waste material did not leach it back into the water.  This 

work was done using the TCLP (Toxicity Characteristic Leaching Procedure) test and 

proved that the media can be landfilled. 
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Results from Long Term Equilibrium Studies Using Different Modified Chabazite 

in Dechlorinated Tap Water 

Long-term equilibrium studies (90 days) were conducted using all three modified 

chabazites. The resulting data was fitted to both Langmuir and Freundlich Isotherms. 

Table 15 presents the correlation coefficients obtained by these fits. 

  
Table 15 - Langmuir and Freundlich correlation coefficients obtained for long term equilibrium 
studies 

Type of modified chabazite 
Langmuir isotherm 

R2 

Freundlich isotherm 

R2 

Copper (I) chloride modified 

chabazite 

0.30 0.13 

Ferrous chloride modified 

chabazite 

0.58 0.40 

Ferrous sulfate modified 

chabazite 

0.96 0.97 

 

Table 15 clearly shows that zeolites modified with a chloride salt did not fit either 

isotherm successfully.  Those studies using ferrous sulfate modified chabazite however 

showed excellent correlation coefficients of 0.96 and 0.97 for Langmuir and Freundlich 

isotherms, respectively.  Figures 44 and 45 illustrate these isotherms for the ferrous 

sulfate modified chabazite in dechlorinated tap water.  
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Figure 44 - Langmuir isotherm for long term equilibrium studies using ferrous sulfate modified 
chabazite in dechlorinated tap water 
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Figure 45 - Freundlich isotherm for long term equilibrium studies using ferrous sulfate modified 
chabazite in dechlorinated tap water 

 
Table 16 - Langmuir and Freundlich isotherm constants for ferrous sulfate modified chabazite in 
dechlorinated tap water 

Langmuir constants Freundlich constants 

Type of modified chabazite Qmax 

(ppm/g) 

KL  

(liter/mg) 

K n 

Ferrous sulfate modified 

chabazite 

11.11 0.131 226.98 2.83 

 

Results from Kinetic Studies for Arsenic Adsorption in Various Source Waters 

Various source waters were gathered in order to determine the impact of these competing 

ions on the adsorption of arsenic onto the modified zeolite.  These waters were DI, 

prechlorinated water from The University of South Florida (USF) potable wells, 

dechlorinated tap water from the USF distribution system, and a higher sulfide 
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groundwater which comes from the USF irrigation wells.  These waters had conductivity 

values of 7.05, 512, 523, and 594 µS/cm, respectively.  For these studies, the ferrous 

sulfate modified chabazite was used and the resulting kinetic results are found in Figure 

46 and Table 17.  
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Figure 46 - As(III) adsorption kinetics for different source waters 
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Table 17 - Results from kinetic studies using different source waters with 0.5 g/L of zeolite 

Removal at 30 mins Removal at 360 mins 
Type of source 

waters 

Initial 

concentration 

of arsenic (ppb) 
Concentration

(ppb) 

% 

Removal

Concentration 

(ppb) 

% 

Removal 

Dechlorinated 

tap 

100 63 37 % 5 95 % 

Prechlorinated 

tap 

100 52 48 % 9 91 % 

Ground 100 68 32 % 23 77 % 

De-ionized 100 76 24 % 59 41 % 

 

The order of reaction and the rate constants for various source waters, which were found 

through integral method, are summarized in Table 18 given below. These all followed a 

second order reaction. 

 
Table 18 - Order of reaction and reaction rate constants for kinetic studies with ferrous sulfate 
modified chabazite in various source waters 

Type of source water Rate constants (liter/mol.min) Rate equation 

Dechlorinated tap 7e-04 rA= 7e-04CA
2 

Prechlorinated tap 2e-04 rA= 2e-04CA
2 

Ground 1e-04 rA= 1e-04CA
2 

De-ionized 1e-05 rA= 1e-05CA
2 
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Figure 46 demonstrates similar kinetics for dechlorinated, prechlorinated and ground 

water, with the affinity for removal decreasing slightly in that order.  It is also clearly 

seen that the DI water hindered the adsorption of arsenic.  Ionic availability therefore 

seems to play a key role in the media’s ability to adsorb arsenic.  An investigation into a 

larger TDS range is provided later to verify these findings. Literature suggests that these 

results are indicative of inner sphere surface complexes.  Inner sphere complexes occur 

when the anion in this case As(III) adheres directly to the metal (Fe) forming an FeAs 

complex.  Outer sphere complexes develop when a water molecule is present between the 

anion and the cation.  Adsorption via outer sphere complexes is reduced when ionic 

strength increases.  On the contrary, adsorption through inner sphere complexes has little 

negative impact by increases in ionic strength and may actually increase capacity as ionic 

strength increases (Goldberg, 2000). 

 

Effects of Competing Ions on Adsorption 

Due to the availability of dechlorinated tap water and its resemblance to prechlorinated 

tap water, dechlorinated tap water was used for all further studies.  The baseline studies 

were done with this water while competing ions were added using salts, commonly found 

in drinking water, which would easily dissociate. 

Since it is assumed that the arsenic removal is by chemisorption, it was assumed that 

competition for adsorption would be due to increased anionic species.  The anions chosen 

for this study, chloride and sulfide, readily exist in typical groundwaters and are easily 

dissociated. 

Chloride Competition 
Kinetic studies were carried out at the declorinated tap water baseline of 38 mg/L 

and increased levels of 145 and 245 mg/L using KCl as a source for chloride. 

Samples which were taken during the kinetic runs were analyzed for both As(III) 

and chlorides.  Figure 47 indicates that the chloride concentration in all three 

waters did not change over time.  The initial increase in chlorides in the first 5 

minutes was due to the addition of the arsenic solution which uses HCl in its 
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preparation.  Figure 48 demonstrates that the initial arsenic adsorption is similar 

for all three waters, but towards the end of the 6 hours the water containing the 

highest TDS achieved the greatest adsorption.  This coincides with the theory of 

inner sphere complexes. 

Chloride Adsorption Kinetics
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Figure 47 - Chloride concentration used in As(III) competitive kinetic studies 
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Figure 48 - As(III) adsorption kinetics with chloride competition 

 

To ensure that this theory was valid experiments were conducted over a broader 

conductivity range.  This ranged from the natural water with a conductivity of 631 

to 1803 and 3220 µS/cm waters, elevated again through the use of KCl.  These 

results, as seen in Figure 49, were not as conclusive as the previous, yet still the 

highest conductivity water yielded the greatest adsorption.  It is possible that a 

chloride threshold exists in this region of conductivity.  
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Arsenic Adsorption Kinetics with Increased Ionic Strength
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Figure 49 - As(III) adsorption kinetics with increase ionic strength 

 

Sulfate Competition 

Sulfate, a species which is commonly found in groundwaters, was also tested to 

verify its impact on the zeolite’s arsenic adsorption.  The dechlorinated tap water 

which was used had a sulfate concentration of 85 mg/L. Potassium sulfate was 

used to increase this to concentrations of 165 and 274 mg/L.  Figure 50 shows a 

significant initial drop in the arsenic level.  Although immediate complexation of 

the arsenic at the elevated sulfate levels may be possible, a more likely 

explanation is an interference with the GFAA.  After consulting Varian, the 

manufacturer of the GFAA, and searching literature for similar instances, no 

explanation of any interference was found. 
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Arsenic Adsorption Kinetics with Increased Sulfates
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Figure 50 - As(III) adsorption kinetics with increased sulfates 

 

To verify these findings, a study was conducted without the zeolite present.  Eight 

jars were dosed with sulfate concentrations ranging from 0 to 405 mg/L and 86 

ppb of arsenic, allowed to mix for 5 minutes at 180 rpm and then sampled.  All 

samples were acidified and then analyzed using the same Varian GFAA and 

procedure as had been implemented in the previous sulfate runs. 

The results from this experiment depicted in Figure 51 show a linear decrease in 

arsenic concentration. This clear indication of an interference prompted additional 

experiments with additional analysis methods. 
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Figure 51 - Sulfate interference with arsenic analysis 

  

Prior analysis of arsenic in this research had been conducted using the GFAA 

with peak calibration and analysis.  Sulfate/arsenic samples were again created 

and 3 methods were used in analysis: GFAA Peak Height Method, Hach 

Colormetric Method, and GFAA Peak Area Method.  As seen in Figure 52, the 

Colormetric and Peak Area Methods both yielded the anticipated constant arsenic 

concentration, while the Peak Height Method decreased in a similar method as 

witnessed previously.  Due to this phenomenon, Peak Area Method was used for 

all subsequent sample analysis. 
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Figure 52 - Sulfate interference on arsenic analysis - method comparison 

 

Arsenic Removal Results from Zeolite/Membrane Reactor 

Once the membrane system had been characterized and operational parameters, which 

were inline with the previous adsorption studies and conventional membrane facilities, 

had been developed, the zeolite/membrane reactor was prepared for arsenic adsorption 

studies.  The same ferrous sulfate modified zeolite, which was characterized in the 

previous kinetic and equilibrium studies, was used as the adsorbent media on the 

membrane substrate.  The system was operated under the varying conditions of flux rate, 

arsenic feed concentration, and ferrous sulfate zeolite concentration, and water samples 

were collected of both the feed and permeate streams.  As can be seen in Figure 53, the 

water quality from all 12 cases when viewed simultaneously exhibit similar behavior but 

there exists some discrepancy between their slope, initial arsenic passage, and time to 

begin sloping.  
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Arsenic Breakthrough Curves

20

40

60

80

100

120

0 10 20 30 40 50 60

Time, min

%
 P

as
sa

ge
   

   
   

 .

I (Cf=140.6 ug/L, Mz=11.78 g, J=34 lmh) II (Cf=147.6 ug/L, Mz=11.78 g, J=51 lmh)
III (Cf=81.1 ug/L, Mz=11.78 g, J=34 lmh) IV (Cf=81.5 ug/L, Mz=11.78 g, J=51 lmh)
V (Cf=34.7 ug/L, Mz=11.78 g, J=34 lmh) VI (Cf=30.2 ug/L, Mz=11.78 g, J=51 lmh)
VII (Cf=141.7 ug/L, Mz=23.56 g, J=34 lmh) VIII (Cf=138.9 ug/L, Mz=23.56 g, J=51 lmh)
IX (Cf=84.3 ug/L, Mz=23.56 g, J=34 lmh) X (Cf=85.2 ug/L, Mz=23.56 g, J=51 lmh)
XI (Cf=37.5 ug/L, Mz=23.56 g, J=34 lmh) XII (Cf=32.5 ug/L, Mz=23.56 g, J=51 lmh)

 
Figure 53 - Arsenic breakthrough curves for zeolite/membrane reactor, where Cf = As(III) feed 
concentration, Mz = mass of zeolite in reactor, J = water flux through membrane in L/(m2.h) or lmh 

 

To better understand these phenomena and to decide which factors most influence the 

reaction, a graph of the arsenic uptake per gram of zeolite was plotted against the total 

arsenic feed concentration which had entered the system.  It is easily seen that two groups 

of lines with different slopes exist, one for the systems having on 11.78 g of zeolite (I – 

VI) and one for those having 23.56 g (VII – XII).  Each group has a similar slope for the 

first 500 µg of arsenic added and then they begin to differ based on flux rate and initial 

concentration. 
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Arsenic Uptake Curves
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Figure 54 - Arsenic uptake per gram of zeolite versus total arsenic into the system 
 
If the amount of arsenic adsorbed in a 5 minute time period is graphed versus the arsenic 

into the system as seen in Figure 55, these cases separate considerably.  Those cases 

which had similar initial arsenic concentrations and flux rates (I and VII, II and VIII, III 

and IX, etc.) are similar in their trends while considerable differences occur when these 

values are changed.  Based on this, it is presumed that under these conditions the mass of 

zeolite of 11.78 g or 23.56 g, does little to impact the overall uptake. 
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Arsenic Uptake Curves
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Figure 55 - Arsenic uptake in 5 minutes versus the arsenic dosed into the system 

 

Appendix C contains many comparative graphs which demonstrate the major differences 

between the operational conditions and their resulting arsenic passage.  Based on these 

graphs it was clear that the initial arsenic concentration and flux rate had the greatest 

impact on the arsenic adsorption and hence the passage into the permeate stream. 
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Development of Mathematical Model Describing this System 

While the data sets, as described previously, demonstrate several trends, the correlation 

of these trends with the operational conditions that govern them is paramount to 

developing a fundamentally useful system.  These models must accurately predict either 

the rate of uptake onto the zeolite or the change in arsenic permeate concentration in 

order for them to be applied by an engineer.  Of the models previously mentioned in the 

literature review which dealt with cake layers on membrane substrates, the Langmuir 

model by Reddad and the Freundlich model by Li were most similar to the operational 

conditions which existed in these experiments.   The model Matsui (Matsui et al., 2000) 

used in his experiments was developed using a continuous feed dose of the adsorbent 

material.  Since our system was batch fed at the onset of the cycle, this model was not 

applicable. 

 

Langmuir Model of Zeolite/Membrane System 

A Langmuir Model similar to the work performed by Reddad (Reddad et al., 2003) was 

initially used to fit the data.  His model states that: 

 

e

em
e bC

bCq
q

+
=

1
 

eq = equilibrium adsorption capacity in batch reactor 

mq = maximum adsorption capacity from Langmuir model 

b  = Langmuir equilibrium parameter 

eC = metal concentration at equilibrium 

 

Using the conditions which exist in our system, the following equation was derived. 
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Where:  
dt

dM M  is the change in molar mass of arsenic inside the zeolite 

  s is the surface area of the zeolite 

  MC is the instantaneous concentration inside the zeolite 

  EC is the final equilibrium concentration inside the zeolite 

  And a, b, and g are fitting parameters 

Using this equation, the following figure was developed which graphs the empirical 

change in molar mass to that of the model prediction.  While the correlation, seen in 

Figure 56, is nearly a 1:1 fit and the R2 value is 0.93, each of the first 6 runs (I –VI) have 

significantly different fitting parameters, a, b, and g, which could not be related to 

operational conditions.  These values are seen in Table 19.  Without this correlation the 

model would be impossible to predict under varying circumstances.   

 
Figure 56 - Langmuir model of arsenic adsorption in zeolite/membrane reactor 
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Table 19 - Curve fitting parameters for Langmuir adsorption model 
Run a b g 
I 0.154 256 1.15 
II 0.151 354 1.37 
III 0.192 300 1.26 
IV 0.306 426 1.42 
V 0.228 625 0.710 
VI 0.389 518 1.35 
 
 
Freundlich Model of Zeolite/Membrane System 

Li (Li et al., 2003) used a Freundlich model to predict removal of organics through the 

use of PAC in a membrane reactor.  Similar to this model the Freundlich model for this 

system was: 

( )g
EM

M bCaCs
dt

dM +−=  

Where:  
dt

dM M  is the change in molar mass of arsenic inside the zeolite 

  s is the surface area of the zeolite 

  MC is the instantaneous concentration inside the zeolite 

  EC is the final equilibrium concentration inside the zeolite 

  And a, b, and g are fitting parameters 

As can be seen from Figures 57 through 62, the model does fit some of the cases fairly 

well, but did not model the non-linear curve change seen in cases like III and IV also the 

curve fitting parameters again proved to have little in common with the operational 

conditions of the system .  Due to this, a Non-Linear Curve Fit was also tried. 
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Figure 57 - Freundlich model of case I (140.6 ug/L of arsenic, 11.78 g of zeolite, and a water flux rate 
of 34 L/(m2 h)) 
 

 
Figure 58 - Freundlich model of case II (147.6 ug/L of arsenic, 11.78 g of zeolite, and a water flux rate 
of 51 L/(m2 h)) 
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Figure 59 - Freundlich model of case III (81.1 ug/L of arsenic, 11.78 g of zeolite, and a water flux rate 
of 34 L/(m2 h)) 
 

 
Figure 60 - Freundlich model of case IV (81.5 ug/L of arsenic, 11.78 g of zeolite, and a water flux rate 
of 51 L/(m2 h)) 
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Figure 61 - Freundlich model of case V (34.7 ug/L of arsenic, 11.78 g of zeolite, and a water flux rate 
of 34 L/(m2 h)) 
 

 
Figure 62 - Freundlich model of case VI (30.2 ug/L of arsenic, 11.78 g of zeolite, and a water flux rate 
of 51 L/(m2 h)) 
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τ
MC

M Aey
dt

dM −

+= 0  

Where:  0y is the initial change in molar mass inside the zeolite 

  A is the rate of this change in molar mass inside the zeolite 

And τ
MC

e
−

 represents the acceleration of change in molar mass uptake 

inside the zeolite 

 

Figures 63 through 74 demonstrate how well a Non-Linear Curve Fit Model fits all cases; 

however, the curve fitting parameters are not based on any science and lend no 

information as to how operational parameters such as flux, zeolite mass and arsenic 

concentration effect the reaction.  Despite numerous attempts to correlate the operational 

and curve fitting parameters, none was found which provided a consistent pattern. 

 

 
Figure 63 – Non-linear curve fit model of case I (140.6 ug/L of arsenic, 11.78 g of zeolite, and a water 
flux rate of 34 L/(m2 h)) 
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Figure 64 - Non-linear curve fit model of case II (147.6 ug/L of arsenic, 11.78 g of zeolite, and a water 
flux rate of 51 L/(m2 h)) 
 

 
Figure 65 - Non-linear curve fit model of case III (81.1 ug/L of arsenic, 11.78 g of zeolite, and a water 
flux rate of 34 L/(m2 h)) 
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Figure 66 - Non-linear curve fit model of case IV (81.5 ug/L of arsenic, 11.78 g of zeolite, and a water 
flux rate of 51 L/(m2 h)) 
 

 
Figure 67 - Non-linear curve fit model of case V (34.7 ug/L of arsenic, 11.78 g of zeolite, and a water 
flux rate of 34 L/(m2 h)) 
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Figure 68 - Non-linear curve fit model of case VI (30.2 ug/L of arsenic, 11.78 g of zeolite, and a water 
flux rate of 51 L/(m2 h)) 
 

 
Figure 69 - Non-linear curve fit model of case VII (141.7 ug/L of arsenic, 23.56 g of zeolite, and a 
water flux rate of 34 L/(m2 h)) 
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Figure 70 - Non-linear curve fit model of case VIII (138.9 ug/L of arsenic, 23.56 g of zeolite, and a 
water flux rate of 51 L/(m2 h)) 
 

 
Figure 71 - Non-linear curve fit model of case IX (84.3 ug/L of arsenic, 23.56 g of zeolite, and a water 
flux rate of 34 L/(m2 h)) 
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Figure 72 - Non-linear curve fit model of case X (85.2 ug/L of arsenic, 23.56 g of zeolite, and a water 
flux rate of 51 L/(m2 h)) 
 

 
Figure 73 - Non-linear curve fit model of case XI (37.5 ug/L of arsenic, 23.56 g of zeolite, and a water 
flux rate of 34 L/(m2 h)) 
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Figure 74 - Non-linear curve fit model of case XII (32.5 ug/L of arsenic, 23.56 g of zeolite, and a water 
flux rate of 51 L/(m2 h)) 
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For an irreversible adsorption model, the saturation time can be estimated as: 

( )
f

satz
sat kaC

C
t

ε−
=

1,  

Where:  Cz,sat is the saturation concentration in the zeolite 

ε is the solution volume per bed volume 

k is the mass transfer coefficient 

a is the zeolite area per bed volume 

and Cf is the feed arsenic concentration 

 

After the initial portion of the cake is saturated, this wave front pushes through the zeolite 

at a velocity, vsat which is related to the feed velocity, v.  The relation between the two 

velocities is shown below. 

 

( ) ( ) ( )satsatsatzsatf ttAvCttvAC −−=− ε1,  

 

Simplifying this equation we arrive at an equation for this saturated velocity as: 
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Using this saturation velocity we can determine the depth of the saturation zone, δsat, 

through the following equation: 

 

( ) ka
v

C
tvC

satz

f
sat −


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−
=

ε
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Having the saturated area now well defined, the model must focus on the adsorption area 

where saturation has yet to occur.  Writing a mass balance on the system provides that the  

 

[arsenic accumulated] = [arsenic flow in – out] – [arsenic adsorbed] 

 

This can be viewed differentially as: 

 

( )*CCka
z
Cv

t
C −−

∂
∂−=

∂
∂ε  

 

With the assumption that the adsorption process is irreversible C* = 0.  This is true for 

this case due to the time constraints of the model prior to reaching equilibrium. Also 

assuming that the concentration of arsenic inside the zeolite is much greater than that in 

the solute, we can drop the left side of the equation.  This results in the following 

simplification: 

 

( )
z
CvCka

∂
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Using the boundary conditions provided by the saturation depth of: 

 

z = δsat   C = Cf 

 

we can integrate and solve for the estimated concentration in the adsorption zone. 

 

( )satz
v
ka

f

e
C
C δ−

−

=  

 

Using this equation, the equation for the saturation depth, and the boundary conditions 

related to the breakthrough into the permeate stream of 

 

z = δ  C = Cp 

 

we arrive at the final mathematical model for the estimated permeate concentration based 

on the feed concentration, zeolite cake layer, porosity of the cake layer, and the mass 

transfer coefficient as: 
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For the model, δ was estimated as 0.002 cm and 0.004 cm when 11.78 and 23.56 g of 

zeolite were added to the reactor, respectively.  These were based on Choi (Choi et al., 

2000) basic model of microspheres in microfiltration.  Monte Carlo Simulations, based 

on experimental data of particle radius, performed by Kim and Hoek, were used to 
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estimate a homogeneous cake layer with a porosity of 60% (Kim, 2002).  The resulting 

equation for determining the cake layer thickness was: 

 

( ) 










−
=

mp

p
c A

m
ερ

δ
1

= volume of cake per area of membrane 

 

Where:  pm = total dried mass of cake, 11.78 or 23.56 g 

pρ = density of particle, 1.73 g/cm3 

ε  = cake porosity, 60% 

And mA = membrane area, 0.85 m2 or 8500 cm2 

 

Although all experiments were carried out for the same duration, the time to reach 

saturation varied substantially.  The permeate data was analyzed and tsat was set when the 

permeate concentration reached the feed concentration or when this permeate 

concentration reached near steady state.  The resulting tsat data was: 

 
Table 20 - Saturation times for each zeolite/membrane case 
Case I II III IV V VI VII VIII IX X XI XII 
Saturation 
Time, Min 33 32 48 37 48 42 43 32 43 37 43 32 

 

  

Using these values, the feed concentration, and the flux rate, the saturation concentration 

inside the zeolite, Cz,sat was determined to be: 

 
Table 21 - Saturation concentrations inside the zeolite for each zeolite/membrane case 
Case I II III IV V VI VII VIII IX X XI XII 
Cz,sat, 
ug/cm3 121.0 195.8 102.4 116.7 50.3 45.3 75.7 78.2 47.9 53.8 29.9 27.9 
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Using the saturation concentrations shown in Table 21, ka were determined and are 

presented in Table 22. 

 
Table 22 - ka values for each zeolite/membrane case 
Case I II III IV V VI VII VIII IX X XI XII 
ka, 
min-1 8.8 14.3 10.5 12.5 12.1 12.7 4.5 4.5 4.7 5.4 6.8 7.7 

 

Using these values the permeate concentration was predicted.  The following graphs, 

Figures 75 – 86, correspond to models of the zeolite/Membrane Cases based on the 

matrix sets provided above. 
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Figure 75 – Irreversible adsorption model of case I (140.6 ug/L of arsenic, 11.78 g of zeolite, and a 

water flux rate of 34 L/(m2 h)) 
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II (Cf=147.6 ug/L, Mz=11.78 g, Jw=51 lmh)
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Figure 76 - Irreversible adsorption model of case II (147.6 ug/L of arsenic, 11.78 g of zeolite, and a 

water flux rate of 51 L/(m2 h)) 
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Figure 77 - Irreversible adsorption model of case III (81.1 ug/L of arsenic, 11.78 g of zeolite, and a 

water flux rate of 34 L/(m2 h)) 
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IV (Cf=81.5 ug/L, Mz=11.78 g, Jw=51 lmh)
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Figure 78 - Irreversible adsorption model of case IV (81.5 ug/L of arsenic, 11.78 g of zeolite, and a 

water flux rate of 51 L/(m2 h)) 
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Figure 79 - Irreversible adsorption model of case V (34.7 ug/L of arsenic, 11.78 g of zeolite, and a 

water flux rate of 34 L/(m2 h)) 
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VI (Cf=30.2 ug/L, Mz=11.78 g, Jw=51 lmh)
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Figure 80 - Irreversible adsorption model of case VI (30.2 ug/L of arsenic, 11.78 g of zeolite, and a 

water flux rate of 51 L/(m2 h)) 
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Figure 81 - Irreversible adsorption model of case VII (141.7 ug/L of arsenic, 23.56 g of zeolite, and a 

water flux rate of 34 L/(m2 h)) 
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VIII (Cf=138.9 ug/L, Mz=23.56 g, Jw=51 lmh)
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Figure 82 - Irreversible adsorption model of case VIII (138.9 ug/L of arsenic, 23.56 g of zeolite, and a 

water flux rate of 51 L/(m2 h)) 
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Figure 83 - Irreversible adsorption model of case IX (84.3 ug/L of arsenic, 23.56 g of zeolite, and a 

water flux rate of 34 L/(m2 h)) 
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X (Cf=85.2 ug/L, Mz=23.56 g, Jw=51 lmh)
y = 30.843e0.027x
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Figure 84 - Irreversible adsorption model of case X (85.2 ug/L of arsenic, 23.56 g of zeolite, and a flux 

water rate of 51 L/(m2.h)) 
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Figure 85 - Irreversible adsorption model of case XI (37.5 ug/L of arsenic, 23.56 g of zeolite, and a 

water flux rate of 34 L/(m2 h)) 
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XII (Cf=32.5 ug/L, Mz=23.56 g, Jw=51 lmh)
y = 11.646e0.0313x

0

5
10

15

20

25
30

35

0 5 10 15 20 25 30 35

Time, min

C
p,

 u
g/

L 
  .

Empirical
Model

 

Figure 86 - Irreversible adsorption model of case XII (32.5 ug/L of arsenic, 23.56 g of zeolite, and a 

water flux rate of 51 L/(m2 h)) 

 

An Analysis of Variance, ANOVA, conducted on all 12 Data sets with a 0.001 

significance difference, showed no significant differences between the actual and 

modeled data. 

If a plot is made of the actual permeate concentration versus the modeled permeate 

concentration the resulting graph show a near 1:1 correlation for nearly all of the data 

points. 

 



www.manaraa.com

 - 116 -  

Breakthrough Model Based on Irrevers ble Adsorption
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Figure 87 - Composite breakthrough comparison of actual versus modeled data for all runs 

 

Summarizing all of the models from their individual graphs into the form: 

t
p eC βα=  

Where:  CP represents the predicted permeate arsenic concentration at some time  

α represents the predicted initial permeate concentration 

β represents the rate of change in permeate concentration and is inversely 

related to time 

and t represents the time from the beginning of the cycle 

We arrive at Table 23 for all sets of data. 
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Table 23 - Operational conditions and correlation coefficients for all cases 

Case Flux, l/(m2.h) Mass, g Arsenic feed concentration, µg/L α β 

I 34 11.78 140.6 50.786 0.0303 

II 51 11.78 147.6 53.289 0.0312 

III 34 11.78 81.1 29.293 0.0208 

IV 51 11.78 81.5 29.451 0.027 

V 34 11.78 34.7 12.477 0.0208 

VI 51 11.78 30.2 10.921 0.0238 

VII 34 23.56 141.7 51.221 0.0233 

VIII 51 23.56 138.9 50.247 0.0313 

IX 34 23.56 84.3 30.438 0.0233 

X 51 23.56 85.2 30.843 0.027 

XI 34 23.56 37.5 13.445 0.0233 

XII 51 23.56 32.5 11.646 0.0313 

 

A definitive prediction of α may be found by plotting α vs. the arsenic feed concentration, 

Cf as shown below. 
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Alpha Correlation y = 0.3613x
R2 = 1
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Figure 88 - Alpha correlation to arsenic feed concentration 

 

Accordingly, for this reactor, regardless of flux rate or mass of zeolite, the α value is 

simply 36.13% of the feed concentration. 

Since β must have units inversely related to time, we looked at several possibilities; 

however, the best fit for this data results in a nearly perfect correlation to the saturation 

time. 
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Table 24 - Saturation times and beta values for all cases 

Case tsat, min 1/tsat, 1/min β 

I 33 0.03030 0.0303 

II 32 0.03125 0.0312 

III 48 0.02083 0.0208 

IV 37 0.02703 0.027 

V 48 0.02083 0.0208 

VI 42 0.02381 0.0238 

VII 43 0.02326 0.0233 

VIII 32 0.03125 0.0313 

IX 43 0.02326 0.0233 

X 37 0.02703 0.027 

XI 43 0.02326 0.0233 

XII 32 0.03125 0.0313 
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Plotting β vs. the saturation time and the inverse saturation time results in the following 

graphs. 
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Figure 89 - Beta correlation to saturation time 
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Figure 90 - Beta correlation to the inverse saturation time 
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For the experiments conducted, β ranged from 0.021 to 0.031.  The first β correlation 

graph demonstrates that if the saturation time were infinitely small the β value would 

approach 0.0522. 

Unfortunately, the saturation time used to predict β is an experimental number and can 

not be sampled like the feed concentration which is used to predict α.  Therefore an 

estimation to predict the saturation time is necessary.  Figure 91 is a graph of the actual 

saturation time versus the estimated saturation time test. 
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Figure 91 - Correlation of saturation time to operational parameters 

 

Limitations of Irreversible Adsorption Model 

While the model accurately predicts the initial arsenic permeate concentration and its 

change over time; there exist several limitations of its use due to operational conditions 

tested or assumptions contained within the model. These being: 

1. Operational Limitations 

a. Arsenic feed concentration does not change over time 

b. Arsenic feed concentrations range from 30 to 150 µg/L of As(III) 

c. The feed water containing the arsenic has a conductivity of approximate 

500 µS/cm, which is similar to the Florida groundwater used 

d. The chabazite has the same diameter and has been treated with ferrous 

sulfate as described in the methods section 

e. The modified zeolite is bulk fed into the reactor at a rate of 0.25 to 1.0 g/L 

of water to be treated over the cycle length 

f. The membrane used has a maximum pore size which is smaller than the 

diameter of the modified zeolite 

g. The membrane reactor is run in dead-end filtration at a flux rate between 

34 and 51 liters per square meter per hour. 
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2. Model Assumptions 

a. The reaction is irreversible 

b. The concentration inside the zeolite is greater than that in the bulk fluid 

c. The zeolite behaves similarly to a microsphere when forming the cake so 

that its porosity is expected to be approximately 60% 

d. The cake layer is homogeneous 

 

Practical Application of Irreversible Adsorption Model 

A design engineer may successfully implement this model if the following is known: 

1. The feed arsenic concentration 

2. The design permeate flux of the system 

3. A pilot test run to confirm saturation time 

 

An example calculation follows: 

Conditions: 

1. The feed arsenic concentration, Cf, is 100 µg/L of As(III) 

2. The design permeate water flux of the system, Jw,  is 40 L/(m2.h) 

 

The first step involves estimating the saturation time, tsat, which is as follows: 
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Taking the inverse of the saturation time provides β, the rate of increase on permeate 

concentration. 
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The next step is estimating the initial permeate concentration, α, which is as follows: 

 

LgLgC f /13.36/100*3613.0*3613.0 µµα ===  

 

Based on the values of α and β and the model prediction of: 
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The resulting breakthrough curve over time is estimated by the following figure: 

 

Estimated Breakthrough Curve  (Cf=100 ug/L and Jw= 40 lmh)

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

0 5 10 15 20 25 30 35 40

Time, min

Es
tim

at
ed

 C
p,

 u
g/

L 
   

   
   

 
Figure 92 - Estimated breakthrough curve for example model calculation 

 

Once the design engineer has developed the estimate breakthrough curve, a pilot system 

should be run within the design limitations provided previously.  By sampling throughout 
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the initial filtration cycle a true saturation time can be found.  This saturation time can 

then be used to refine the predicted breakthrough curve. 
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CONCLUSIONS AND FUTURE WORK 

 
The development of a mathematical model to describe the adsorption of arsenic by a 

modified zeolite on a membrane substrate led to several significant results which 

culminated in the final successful outcome of the research.  This model needed to 

determine either the rate of change of adsorption onto the zeolite or the change in 

permeate concentration of arsenic. 

Initially, a natural zeolite was obtained and modified through the use of copper chloride, 

ferrous chloride, and ferrous sulfate.  Kinetic and equilibrium studies of arsenic 

adsorption on this modified zeolite led to the creation of adsorption isotherms which 

characterized this process not only in de-ionized water, but also in dechlorinated tap, and 

a natural groundwater.  It was concluded from this work that the ferrous sulfate modified 

zeolite demonstrated the greatest affinity for arsenic adsorption.  Future research related 

to the modification process such as ferrous sulfate concentration and contact time may 

lead to an increase in the maximum adsorption capacity. 

Conclusions may also be drawn from these studies regarding the water in which the 

arsenic exists.  Waters with conductivities of 500 µS/cm and greater were much more 

efficient at arsenic removal.  This is most likely attributed to the ionic mobility of the 

arsenic in such waters.  While experiments where chlorides were increased into the water 

demonstrated little change in arsenic adsorption, experiments of sulfates showed a 

significant initial change in arsenic adsorption when levels were increased above 100 

mg/L.  This precarious change led to a further experiment where it is concluded that the 

sulfate lowers the peak height of the GFAA in a linear correlation to the sulfate dosed.  It 

can be concluded therefore that sulfates have an interference with this method. 

The adsorption of arsenic by the zeolite/membrane reactor was preceded by 

characterization of the membranes operational and rejection qualities.  The membrane 

was found to have no inherent rejection of arsenic without the addition of the zeolite 
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adsorbent.  This is attributed to the large pore size of the membrane compared to the 

effective size of the arsenic molecule.  Flux decline tests were used to determine the 

permeability of the membrane which was found to be 10 gfd/psi.  This baseline figure 

aided in the determination of the amount of cake which was permissible in the reactor 

without adding significant headloss to the system.  This value was found to be 

approximately 25 g and coupled with the flux of the system allowed for the reactor to be 

operated within the equilibrium adsorption isotherm tested levels.  These values are 

assumed to be conditional on the Hydranautics membrane used and the flux rate tested.  

Further work implementing various membranes and the use of a cross flow rate could 

increase these values to allow for greater contact time thereby enhancing adsorption and 

decreasing the arsenic permeate concentration. 

Twelve different cases were run which encompassed three different arsenic feed 

concentrations, two flux rates, and two zeolite masses.  All 12 cases exhibited were 

successful at removing the arsenic, but at various efficiencies and for various amounts of 

time.  The resulting behaviors were analyzed and both Langmuir and Freundlich models 

were applied to determine if it was capable of predicting the process profile. While both 

models had some ability to fit the data, it was not possible to correlate the curve fitting 

parameters to the operational conditions.  It can therefore be concluded that while the 

arsenic adsorption for a given operational condition may follow a traditional isotherm 

curve, changing the operational conditions erratically changes the fitting parameters. Use 

of Origin, a curve fitting data program, fit the data extremely well, but the curve fitting 

parameters used had no significant scientific meaning and could not be found based on 

the operational conditions.  While these three models deal with the mass in the system as 

well as the feed concentration, they do not include the boundary conditions of the 

governing system.  Consequently, the model does not include all of the operating 

conditions which are necessary for predicting the permeate concentration profile under 

varying conditions. 

Further research into the model of the 12 cases led to the discovery of a theoretical 

exponential model based on the Irreversible Adsorption Model as described by Cussler 

(1997).  This model implemented the operational and boundary conditions governing the 
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system and fit all cases extremely well.  The coefficients, α and β, of all 12 cases were 

analyzed for their correlation to the operational conditions and it was found that α was 

approximately 36% of the initial arsenic feed concentration and β was equal to the 

inverse of the cake saturation time.  While the arsenic feed concentration is easily 

measured the cake saturation time is an empirical number.  A prediction of β, which did 

not range outside of 0.021 to 0.031, can be found by using the following equation: 
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While the correlation is not perfect it does provide a general trend to the time to reach 

saturation.  Although this value is necessary for prediction of system operation, it should 

be noted that the system itself would regenerate after every backwash.  This knowledge 

coupled with a single cycle of sampling would lead to the saturation time for the 

operational conditions.  This time could therefore be used to predict the effective cycle 

time versus permeate arsenic concentration for all future cycles.  Through the use of this 

model, a utility could develop a sequential backwashing schedule of multiple filters to 

meet the combined filtrate arsenic MCL of 10 µg/L. 

Using the current design, a plant which operated at a flux rate of 25 L/(m2.h) and had an 

influent arsenic concentration of 20 µg/L could meet the new MCL prior to needing 

backwashing.  While these are possible operating conditions, optimization of the system 

could expand the possible applications of this model.  Future research, such as a more 

comprehensive understanding of the saturation time and optimization of the system 

operational parameters, could lead to a significant increase in the adsorption potential of 

the zeolite/membrane reactor.  This optimization, as well as a cost analysis of the process, 

could lead to a legitimate alternative to costly arsenic removal processes which are 

currently being implemented throughout the world. 
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Appendix A – Arsenic Standards and Analysis 

Preparation of Arsenic Trioxide Standard Solution 

1. Arsenic trioxide solution required for equilibrium studies was prepared using 

instruction given in the “Standard Methods for Water and Wastewater, 19th 

Edition, 1995”. 

2. Stock As(III) Solution: Dissolved 1.320 g of arsenic trioxide As2O3 in water 

containing 4gms of NaOH. It was then diluted to 1 L to get 1 g/L of As(III) 

solution. 

3. Intermediate As(III) Solution: Diluted 10 ml of stock As solution to 1000ml with 

water containing 5 ml of concentrated HCl to get 1 mg/L of As(III) solution. 

4. Standard As(III) Solution: Dilute 10 ml of intermediate As(III) solution to 1000 

ml of water containing the same concentration of acid used for sample 

preservation to get 100 µg/L of As(III) solution. 

 

Arsenic Analysis 

Arsenic analysis was conducted using the graphite furnace atomic absorption 

spectrometry method as described by ASTM 2972-93C. A description of this method is 

included below:  

Graphite Furnace Atomic Absorption Spectrometry (GFAA)  

(EPA 200.9, SM 3113 B, ASTM 2972-93 C, SW-846 7060A)  

In the graphite furnace atomic absorption spectrometry technique, a small volume of 

sample (typically 5 to 50 µL) is injected into a graphite tube positioned in the optical path 

of an atomic absorption spectrophotometer. An electrical furnace is used to heat the tube 

sequentially through drying, charring, and finally, an atomization step. A light beam from 

a hollow cathode lamp or electrode less discharge lamp (EDL) containing the element of 

interest is directed through the tube, into a monochromator, and into a detector that 

measures the amount of light absorbed by the free ground state atoms. The amount of 

light absorbed by the free ground state atoms is directly proportional to the concentration 

of the analyte in solution within the linear calibration range of the instrument. Because 
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the greater percentage of analyte atoms are vaporized and dissociated within the light 

beam passing through the graphite tube, greater analytical sensitivity is obtained and 

lower detection limits are possible as compared with flame atomic absorption. The limit 

of detection can be extended by increasing the injection volume or by using a multi-

injection technique. These techniques effectively increase the total amount of analyte 

placed in the tube resulting in greater absorbance. ASTM 2972-93 C utilizes standard 

graphite tubes and “off-the-wall-atomization.” The major highlights of this method are 

described below:  

1. Method Used: ASTM 2972-93 C  

2. Lamp Used: UltrAA high intensity cathode lamp  

3. Matrix Modifier: 150 mg/L as NiNO3  

4. Wavelength: 193.7nm  

5. Standards: 10, 20 and 50 ppb  

6. Measurement mode: Peak Height  
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Appendix B – Determination of Order of Reaction 

Integral method used for determining rate order of kinetic and equilibrium reactions, 

taken from the Master’s Thesis of Ashutosh Vakharkar, University of South Florida, 

2005. 

Procedure: The integral method of analysis always puts a particular rate equation to the 

test by integrating and comparing the predicted concentration versus time curve with the 

experimental concentration versus time data. The integral method is especially useful for 

fitting simple reaction types corresponding to elementary reactions.  To find a rate 

equation using the integral method lets consider the following example: Reactant A 

decomposes in a batch reactor. 

A  Products 

The composition of A in the reactor is measured at various times. To find a rate equation 

that fits the data, start by guessing the simplest rate form, or first order kinetics. This 

means a plot of ln (Cao/Ca) versus time should give a straight line through the origin. If 

this plot fails to give us a straight line, it means that first order kinetics cannot reasonably 

represent the data and another rate form must be guessed. Proceed to guess the rate 

equation to be second order. This suggests that a plot of 1/Ca versus time should give a 

straight line. If this plot gives a straight line then the equation is of the second order with 

the intercept representing the initial concentration and slope representing the rate 

constant, k. If this plot fails to give a straight line then the second order kinetic form is 

rejected as well and fractional method should be used as calculations with higher order 

such as third order rate form are tedious and not recommended. 
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Rate Determination for Modified Chabazite with Different Salts In De-ionized 

Water 
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Figure 93 - Kinetic rate for copper (I) modified chabazite in de-ionized water, 1st order 
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Figure 94 - Kinetic rate for copper (I) modified chabazite in de-ionized water, 2nd order 
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Figure 95 - Kinetic rate for ferrous chloride modified chabazite in de-ionized water, 1st order 
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Figure 96 - Kinetic rate for ferrous chloride modified chabazite in de-ionized water, 2nd order 
 

 



www.manaraa.com

Appendix B - (Continued) 

 - 141 -  

 

FeSO4 1st Order

y = 0.0009x + 0.2299
R2 = 0.6993

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 50 100 150 200 250 300 350 400

Time, min

Ln
 (F

eS
O

4-
0/

Fe
SO

4)

 
Figure 97 - Kinetic rate for ferrous sulfate modified chabazite in de-ionized water, 1st order 
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Figure 98 - Kinetic rate for ferrous sulfate modified chabazite in de-ionized water, 2nd order 
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Rate Determination with Chloride Salts of Different Metals In Tap Water 
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Figure 99 - Kinetic rate for copper (I) chloride modified chabazite in tap water, 1st order 
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Figure 100 - Kinetic rate for copper (I) chloride modified chabazite in tap water, 2nd order 
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Figure 101 - Kinetic rate for ferrous chloride modified chabazite in tap water, 1st order 
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FeCl2 2nd Order 
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Figure 102 - Kinetic rate for ferrous chloride modified chabazite in tap water, 2nd order 
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Rate Determination with Different Salts of Same Metal in Tap Water 
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Figure 103 - Kinetic rate for ferrous chloride modified chabazite in dechlorinated tap water 
 
 

 
Figure 104 - Kinetic rate for ferrous sulfate modified chabazite in dechlorinated tap water 
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Rate Determination for Ferrous Modified Chabazite in Different Source Waters 
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Figure 105 - Kinetic rate determination for ferrous sulfate modified chabazite in different source 
waters 
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Appendix C – Operational Conditions Versus Arsenic Breakthrough 
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Figure 106 - Effect of flux on arsenic breakthrough at 30 µg/L and 11.78 g of zeolite 
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Effect of Flux on Arsenic Breakthrough at 80 ug/L and 11.78 g of Zeolite
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Figure 107 - Effect of flux on arsenic breakthrough at 80 µg/L and 11.78 g of zeolite 
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Effect of Flux on Arsenic Breakthrough at 140 ug/L and 11.78 g of Zeolite
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Figure 108 - Effect of flux on arsenic breakthrough at 140 µg/L and 11.78 g of zeolite 
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Effect of Flux on Arsenic Breakthrough at 30 ug/L and 23.56 g of Zeolite
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Figure 109 - Effect of flux on arsenic breakthrough at 30 µg/L and 23.56 g of zeolite 
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Effect of Flux on Arsenic Breakthrough at 80 ug/L and 23.56 g of Zeolite
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Figure 110 - Effect of flux on arsenic breakthrough at 80 µg/L and 23.56 g of zeolite 
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Effect of Flux on Arsenic Breakthrough at 140 ug/L and 23.56 g of Zeolite
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Figure 111 - Effect of flux on arsenic breakthrough at 140 µg/L and 23.56 g of zeolite 
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Aresnic Breakthrough with 11.78 g of Zeolite and a flux rate of 34 lmh
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Figure 112 - Arsenic breakthrough with 11.78 g of zeolite and a flux rate of 34 L/(m2.h) 
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Aresnic Breakthrough with 11.78 g of Zeolite and a flux rate of 51 lmh
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Figure 113 - Arsenic breakthrough with 11.78 g of zeolite and a flux rate of 51 L/(m2.h) 
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Aresnic Breakthrough with 23.56 g of Zeolite and a flux rate of 34 lmh
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Figure 114 - Arsenic breakthrough with 23.56 g of zeolite and a flux rate of 34 L/(m2.h) 
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Aresnic Breakthrough with 23.56 g of Zeolite and a flux rate of 51 lmh
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Figure 115 - Arsenic breakthrough with 23.56 g of zeolite and a flux rate of 51 L/(m2.h)
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Appendix D – Analysis of Variance of Irreversible Adsorption Model 
An Analysis of Variance, ANOVA, was conducted on all 12 Data sets with Data1_A referring to the actual 

permeate concentration and Data1_B referring to the modeled permeate concentration.  Data Sets 2-12 are 

denoted similarly.  A one way ANOVA with a 0.001 significance difference, showed no significant 

differences between the actual and modeled data. 

 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean           SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data1_A                     7              91.33          11.46469       4.33324          
    Data1_B                     7              91.70371       29.70622       11.2279          
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                             Sum of         Mean                                      
    Source    DoF       Squares        Square               F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         0.488801454    0.488801454    0.00096        0.97574     
    Error     12        6083.39174     506.949312                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                              Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         1450367.43     1450367.43     4.79245        0.04908     
    Error     12        3631631.11     302635.926                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.         
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 Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                             Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         823.915819     823.915819     5.03918        0.04441     
    Error     12        1962.02378     163.501981                               
 
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data1_A                  91.33          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data1_B                  91.70371       -0.37371       -52.33847           51.59105            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data1_A                  91.33          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data1_B                  91.70371       -0.37371       -52.33846           51.59104            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data1_A                  91.33          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data1_B                  91.70371       -0.37371       -52.34055           51.59314            No          
    ------------------------------------------------------------------------------------------------------------ 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean           SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data2_A                     7              91.82429       14.93564       5.64514          
    Data2_B                     7              95.08445       31.74337       11.99787         
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
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    ANOVA                                                                        
                                                                                 
                             Sum of         Mean                                        
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         37.2003374     37.2003374     0.06045        0.80994     
    Error     12        7384.28909     615.357424                                
    
 ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                             Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         1582836.85     1582836.85     4.14175        0.06454     
    Error     12        4585995.50     382166.292                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                             Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         560.283966     560.283966     2.50768        0.13928     
    Error     12        2681.13077     223.427564                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data2_A                  91.82429       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data2_B                  95.08445       -3.26016       -60.51213           53.9918             No          
    ------------------------------------------------------------------------------------------------------------ 
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Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean               Difference    Simultaneous                            Significant  
                                                          between       Confidence Intervals                    at 0.001    
    Data2_A                  91.82429       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data2_B                  95.08445       -3.26016       -60.51212           53.99179            No          
    ------------------------------------------------------------------------------------------------------------ 
 
Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean               Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data2_A                  91.82429       Means           Lower Limit       Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
 
    Data2_B                  95.08445       -3.26016       -60.51442           53.99409            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean              SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data3_A                     10             52.565          15.68677       4.96059          
    Data3_B                     10             52.08903       16.27358       5.14616          
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         1.13272015     1.13272015     0.00443        0.94764     
    Error     18        4598.13749     255.452083                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         1424.58061     1424.58061     0.03375        0.85629     
    Error     18        759771.765     42209.5425                                
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    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square                    F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         0.00186373386  0.00186373386  0.00002        0.99624     
    Error     18        1471.31501     81.7397227                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data3_A                  52.565         Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data3_B                  52.08903       0.47597        -27.555             28.50693            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data3_A                  52.565         Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data3_B                  52.08903       0.47597        -27.55501           28.50694            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data3_A                  52.565         Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data3_B                  52.08903       0.47597        -27.55533           28.50726            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean               SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data4_A                     8              53.40125       17.18722       6.0766           
    Data4_B                     8              52.31271       17.13565       6.05837          
    ------------------------------------------------------------------------------------------- 
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    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         4.73964148     4.73964148     0.01609        0.90086     
    Error     14        4123.21852     294.515608                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         9.59645533     9.59645533     0.00020        0.98898     
    Error     14        679485.957     48534.7112                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         4.55535871     4.55535871     0.06493        0.80257     
    Error     14        982.194122     70.1567230                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean             Difference     Simultaneous                            Significant  
                                                         between        Confidence Intervals                    at 0.001    
    Data4_A                  53.40125       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data4_B                  52.31271       1.08854        -34.43955           36.61662            No          
    ------------------------------------------------------------------------------------------------------------ 
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Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                         between        Confidence Intervals                    at 0.001    
    Data4_A                  53.40125       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data4_B                  52.31271       1.08854        -34.43956           36.61664            No          
   
  ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean               Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data4_A                  53.40125       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data4_B                  52.31271       1.08854        -34.44358           36.62065            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean               SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data5_A                     10             20.672         8.08523        2.55677          
    Data5_B                     10             22.18756       6.93181        2.19203          
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square         F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         11.4845469     11.4845469     0.20251        0.65807     
    Error     18        1020.78815     56.7104530                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square         F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         1215.07472     1215.07472     0.49589        0.49032     
    Error     18        44105.3778     2450.29877                                
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    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    
Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square         F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         4.07846833     4.07846833     0.24647        0.62558     
    Error     18        297.853475     16.5474153                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean             Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data5_A                  20.672         Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data5_B                  22.18756       -1.51556       -14.72288           11.69177            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean             Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data5_A                  20.672         Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data5_B                  22.18756       -1.51556       -14.72288           11.69177            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean            Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data5_A                  20.672         Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data5_B                  22.18756       -1.51556       -14.72304           11.69193            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean             SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data6_A                     9              20.53667       8.31463        2.77154          
    Data6_B                     9              19.32247       6.23627        2.07876          
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    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         6.63421185     6.63421185     0.12283        0.73056     
    Error     16        864.193017     54.0120636                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         3251.86131     3251.86131     1.93966        0.18276     
    Error     16        26824.1150     1676.50718                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         15.5135949     15.5135949     0.90549        0.35547     
    Error     16        274.125052     17.1328157                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean             Difference     Simultaneous                            Significant  
                                                         between        Confidence Intervals                    at 0.001    
    Data6_A                  20.53667       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data6_B                  19.32247       1.21419        -12.69571           15.1241             No          
    ------------------------------------------------------------------------------------------------------------ 
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Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean             Difference     Simultaneous                            Significant  
                                                         between        Confidence Intervals                    at 0.001    
    Data6_A                  20.53667       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data6_B                  19.32247       1.21419        -12.69572           15.12411            No          
    
 ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data6_A                  20.53667       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data6_B                  19.32247       1.21419        -12.6959            15.12429            No          
    ------------------------------------------------------------------------------------------------------------ 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean              SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data7_A                     9              95.20889       25.37694       8.45898          
    Data7_B                     9              91.44089       28.83911       9.61304          
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         63.8901470     63.8901470     0.08659        0.77234     
    Error     16        11805.4649     737.841555                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         125273.732     125273.732     0.25526        0.62028     
    Error     16        7852278.76     490767.422                                
    ------------------------------------------------------------------------------ 
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    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         93.9286065     93.9286065     0.27575        0.60670     
    Error     16        5450.00508     340.625317                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data7_A                  95.20889       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data7_B                  91.44089       3.768          -47.6435            55.1795             No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data7_A                  95.20889       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data7_B                  91.44089       3.768          -47.64353           55.17953            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data7_A                  95.20889       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data7_B                  91.44089       3.768          -47.6442            55.1802             No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean             SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data8_A                     7              97.04            26.21415       9.90802          
    Data8_B                     7              89.70611       29.94785       11.31922         
    ------------------------------------------------------------------------------------------- 
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    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square            F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         188.250775     188.250775     0.23768        0.63467     
    Error     12        9504.33036     792.027530                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         113067.452     113067.452     0.16184        0.69454     
    Error     12        8383656.13     698638.011                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         97.5265569     97.5265569     0.28555        0.60284     
    Error     12        4098.42656     341.535546                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data8_A                  97.04          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data8_B                  89.70611       7.33389        -57.61875           72.28653            No          
    ------------------------------------------------------------------------------------------------------------ 
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 Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data8_A                  97.04          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data8_B                  89.70611       7.33389        -57.61874           72.28652            No          
 
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data8_A                  97.04          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data8_B                  89.70611       7.33389        -57.62135           72.28913            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean                SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data9_A                     9              55.00444       17.20626       5.73542          
    Data9_B                     9              54.33911       17.13775       5.71258          
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         1.99200584     1.99200584     0.00676        0.93551     
    Error     16        4718.06536     294.879085                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         19.6846527     19.6846527     0.00028        0.98679     
    Error     16        1114199.61     69637.4756                                
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    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square                F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         0.291880244    0.291880244    0.00287        0.95794     
    Error     16        1627.41823     101.713640                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data9_A                  55.00444       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data9_B                  54.33911       0.66533        -31.83596           33.16663            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data9_A                  55.00444       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data9_B                  54.33911       0.66533        -31.83598           33.16665            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean              Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data9_A                  55.00444       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data9_B                  54.33911       0.66533        -31.83641           33.16707            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean              SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data10_A                    8              59.49            18.19189       6.4318           
    Data10_B                    8              54.78522       17.94555       6.34471          
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    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         88.5396517     88.5396517     0.27118        0.61068     
    Error     14        4570.91391     326.493851                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         242.696599     242.696599     0.00430        0.94861     
    Error     14        789259.170     56375.6550                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         11.4038241     11.4038241     0.18142        0.67663     
    Error     14        880.041930     62.8601378                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean            Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data10_A                 59.49          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data10_B                 54.78522       4.70478        -32.70242           42.11197            No          
    ------------------------------------------------------------------------------------------------------------ 
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Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data10_A                 59.49          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data10_B                 54.78522       4.70478        -32.70244           42.11199            No          
  
   ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean           Difference     Simultaneous                            Significant  
                                                       between        Confidence Intervals                    at 0.001    
    Data10_A                 59.49          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data10_B                 54.78522       4.70478        -32.70666           42.11621            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean               SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data11_A                    9              18.95222       9.10479        3.03493          
    Data11_B                    9              24.00321       7.57026        2.52342          
    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                 
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         114.805956     114.805956     1.63768        0.21889     
    Error     16        1121.64728     70.1029552                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         2328.04464     2328.04464     0.53005        0.47711     
    Error     16        70274.1177     4392.13236                                
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    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         5.50360425     5.50360425     0.16862        0.68679     
    Error     16        522.239998     32.6399999                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean             Difference     Simultaneous                            Significant  
                                                          between        Confidence Intervals                    at 0.001    
    Data11_A                 18.95222       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data11_B                 24.00321       -5.05098       -20.89798           10.79601            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean               Difference     Simultaneous                            Significant  
                                                           between        Confidence Intervals                    at 0.001    
    Data11_A                 18.95222       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data11_B                 24.00321       -5.05098       -20.89799           10.79602            No          
    ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean               Difference     Simultaneous                            Significant  
                                                           between        Confidence Intervals                    at 0.001    
    Data11_A                 18.95222       Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data11_B                 24.00321       -5.05098       -20.89819           10.79623            No          
    ------------------------------------------------------------------------------------------------------------ 
 
 
One-Way ANOVA                                                                                          
                                                                                              
    Summary Statistics                                                                        
                                                                                              
    Dataset                     N              Mean              SD             SE               
    ------------------------------------------------------------------------------------------- 
    Data12_A                    7              17.12             9.2877         3.51042          
    Data12_B                    7              20.79255       6.94147        2.62363          
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    ------------------------------------------------------------------------------------------- 
 
    Null Hypothesis:           The means of all selected datasets are equal                                                                   
    Alternative Hypothesis:    The means of one or more selected datasets are different                                                                  
                                                                                 
    ANOVA                                                                        
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         47.2065867     47.2065867     0.70224        0.41841     
    Error     12        806.672149     67.2226791                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population means are not significantly different.                                                                   
 
    Levene's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square             F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         3728.29263     3728.29263     1.17211        0.30024     
    Error     12        38170.2036     3180.85030                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Brown-Forsythe's Test for Equal Variance                                                                   
                                                                                 
                                 Sum of         Mean                                      
    Source    DoF       Squares        Square              F Value        P Value     
    ------------------------------------------------------------------------------ 
    Model     1         11.4814494     11.4814494     0.42726        0.52566     
    Error     12        322.464638     26.8720532                                
    ------------------------------------------------------------------------------ 
                                                                                 
    At the 0.001 level,                                                                   
    the population variations are not significantly different.                                                                   
 
    Means Comparison using Bonferroni Test                                                                                  
                                                                                                               
    Dataset                  Mean            Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data12_A                 17.12          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data12_B                 20.79255       -3.67255       -22.59531           15.25022            No          
    ------------------------------------------------------------------------------------------------------------ 
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Means Comparison using Scheffe' Test                                                                                  
                                                                                                               
    Dataset                  Mean            Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data12_A                 17.12          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data12_B                 20.79255       -3.67255       -22.59531           15.25021            No          
   
  ------------------------------------------------------------------------------------------------------------ 
 
    Means Comparison using Tukey Test                                                                                  
                                                                                                               
    Dataset                  Mean            Difference     Simultaneous                            Significant  
                                                        between        Confidence Intervals                    at 0.001    
    Data12_A                 17.12          Means          Lower Limit         Upper Limit         Level       
    ------------------------------------------------------------------------------------------------------------ 
    Data12_B                 20.79255       -3.67255       -22.59607           15.25098            No          
    ------------------------------------------------------------------------------------------------------------ 
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Appendix E – Glossary 

Adsorbate A substance that is adsorbed 

Adsorbent A material having capacity or tendency to adsorb another substance 
Adsorption The accumulation of gases, liquids, or solutes on the surface of a solid 

or liquid 
Alkylation The replacement of a hydrogen atom in an organic compound by an 

alkyl group 
Allosteric Pertaining to regulation of the rate of an enzymatic process 

Allotropic The existence, especially in the solid state, of two or more crystalline 
or molecular structural forms of an element 

Arsenate A salt or ester of arsenic acid containing 5 Oxygens 
Arsenite A salt or ester of arsenic acid containing 3 Oxygens 

Arsenopyrite A common mineral, iron arsenic sulfide, FeAsS, occurring in silver-
white to steel-gray crystals or masses: an ore of arsenic 

Bed A compact mass of a substance functioning in a reaction as a catalyst 
or reactant 

Cake Layer A crust or compact mass 
Chabazite A zeolite mineral, essentially a hydrated sodium calcium aluminum 

silicate, occurring usually in red to colorless rhombohedral crystals 
Chemisorption Adsorption involving a chemical linkage between the adsorbent and 

the adsorbate 
Colloidal A system in which finely divided particles, which are approximately 

10 to 10,000 angstroms in size, are dispersed within a continuous 
medium in a manner that prevents them from being filtered easily or 
settled rapidly 

Complexation To form a compound in which independently existing molecules or 
ions of a nonmetal form coordinate bonds with a metal atom or ion. 

Cracking The process of breaking down certain hydrocarbons into simpler ones 
of lower boiling points by means of excess heat, distillation under 
pressure, etc., in order to give a greater yield of low-boiling products 
than could be obtained by simple distillation 

Crossflow Filtration in which some feed water passes parallel to the surface of 
filtration without being filtered 

Cryosorption Sorption occurring on a cold surface 

Deadend Filtration in which all feed water is filtered
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Dehyroxylating To remove a hydroxyl group from a compound
Desiccant A substance, such as calcium oxide or silica gel, that has a high 

affinity for water and is used as a drying agent 
Divalent Having a valence of two 

Enthalpy A thermodynamic function of a system, equivalent to the sum of the 
internal energy of the system plus the product of its volume multiplied 
by the pressure exerted on it by its surroundings 

Flux The rate of flow of fluid, particles, or energy through a given surface 

HDTMA A surfactant, hexadecyltrimethylammonium bromide 
Hydrocracking The process whereby hydrocarbon molecules of petroleum are broken 

down into kerosene and gasolene by the addition of hydrogen under 
high pressure in the presence of a catalyst 

Isomerization The conversion of a compound into an isomer of itself 
Isotherms Functions which connect the amount of adsorbate on the adsorbent, 

Lumen A cavity or passage in a tubular shape 
Methylate To replace (one or more hydrogen atoms) with the methyl group 

Microfiltration A filtration process which removes contaminants from a fluid or gas 
by passage through a microporous membrane. A typical microfiltration 
membrane pore size range is 0.1-10µm 

Monovalent Having a valence of one; univalent. 

Nanofiltration Variety of membrane filtration in which hydrostatic pressure forces a 
liquid against a semipermeable membrane. Suspended solids and 
solutes of high molecular weight (0.001 µm and larger) are retained, 
while water and low molecular weight solutes pass through the 
membrane. 

Polymer A chemical compound or mixture of compounds formed by 
polymerization and consisting essentially of repeating structural units 

Potable Fit or suitable for drinking 

ppb Parts per billion or µg/L 
ppm Parts per million or mg/L 

Sieving To put or force through a sieve; sift 
Slurries A thin mixture of an insoluble substance, as cement, clay, or coal, with 

a liquid, as water or oil 
Smelting To melt or fuse (ores) in order to separate the metallic constituents 
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Substrate An underlying layer; a substratum 
Ultrafiltration Variety of membrane filtration in which hydrostatic pressure forces a 

liquid against a semipermeable membrane. Suspended solids and 
solutes of high molecular weight (0.01 µm and larger) are retained, 
while water and low molecular weight solutes pass through the 
membrane. 

USEPA United States Environmental Protection Agency 
All definitions reproduced from www.Dictionary.com.
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